A Novel Standardized Cannabis sativa L. Extract and Its Constituent Cannabidiol Inhibit Human Polymorphonuclear Leukocyte Functions.

ijms-logo

“Cannabis and cannabinoids offer significant therapeutic benefits for a wide scope of pathological conditions. Among them, the clinical issues rooted in inflammation stand out, nonetheless, the underlying mechanisms are not yet plainly understood. Circumstantial evidence points to polymorphonuclear leukocytes (PMN) as targets for the anti-inflammatory effects of cannabis. Therefore, we conducted this study to assess the effects of CM5, a novel Cannabis sativa L. extract standardized in 5% cannabidiol (CBD), on human PMN functions, including cell migration, oxidative metabolism and production of tumour necrosis factor (TNF)-α. We then sought to investigate whether such effects could be ascribed to its content in CBD. Cell migration was assessed by the Boyden chamber assay, oxidative metabolism by means of spectrofluorimetric measurement of reactive oxygen species (ROS) production, and TNF-α was measured by real time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results show that both CM5 and CBD inhibit PMN migration, ROS and TNF-α production, indicating that CBD may be the main item responsible for the effects of CM5. CM5 is however more potent than CBD on cell migration and TNF-α production, and less effective on ROS production, suggesting that beyond CBD, other components of the cannabis plant may contribute to the biological effects of the extract. As a whole, such results support the use of cannabis standardized extract and CBD to stem inflammation; however, they also warrant in-depth investigation of the underlying cellular and molecular mechanisms to better exploit their therapeutic potential.”

https://www.ncbi.nlm.nih.gov/pubmed/31013912

https://www.mdpi.com/1422-0067/20/8/1833

Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials.

molecules-logo

“Cannabidiol (CBD) is one of the cannabinoids with non-psychotropic action, extracted from Cannabis sativa. CBD is a terpenophenol and it has received a great scientific interest thanks to its medical applications. This compound showed efficacy as anti-seizure, antipsychotic, neuroprotective, antidepressant and anxiolytic. The neuroprotective activity appears linked to its excellent anti-inflammatory and antioxidant properties. The purpose of this paper is to evaluate the use of CBD, in addition to common anti-epileptic drugs, in the severe treatment-resistant epilepsy through an overview of recent literature and clinical trials aimed to study the effects of the CBD treatment in different forms of epilepsy. The results of scientific studies obtained so far the use of CBD in clinical applications could represent hope for patients who are resistant to all conventional anti-epileptic drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/31013866

https://www.mdpi.com/1420-3049/24/8/1459

The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet?

Image result for frontiers in pharmacology

“The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes.

Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare.

CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2).

These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.”

https://www.ncbi.nlm.nih.gov/pubmed/31024307

https://www.frontiersin.org/articles/10.3389/fphar.2019.00339/full

The Endocannabinoid/Endovanilloid System in Bone: From Osteoporosis to Osteosarcoma.

ijms-logo

“Bone is a dynamic tissue, whose homeostasis is maintained by a fine balance between osteoclast (OC) and osteoblast (OB) activity. The endocannabinoid/endovanilloid (EC/EV) system’s receptors are the cannabinoid receptor type 1 (CB1), the cannabinoid receptor type 2 (CB2), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). Their stimulation modulates bone formation and bone resorption. Bone diseases are very common worldwide. Osteoporosis is the principal cause of bone loss and it can be caused by several factors such as postmenopausal estrogen decrease, glucocorticoid (GC) treatments, iron overload, and chemotherapies. Studies have demonstrated that CB1 and TRPV1 stimulation exerts osteoclastogenic effects, whereas CB2 stimulation has an anti-osteoclastogenic role. Moreover, the EC/EV system has been demonstrated to have a role in cancer, favoring apoptosis and inhibiting cell proliferation. In particular, in bone cancer, the modulation of the EC/EV system not only reduces cell growth and enhances apoptosis but it also reduces cell invasion and bone pain in mouse models. Therefore, EC/EV receptors may be a useful pharmacological target in the prevention and treatment of bone diseases. More studies to better investigate the biochemical mechanisms underlining the EC/EV system effects in bone are needed, but the synthesis of hybrid molecules, targeting these receptors and capable of oppositely regulating bone homeostasis, seems to be a promising and encouraging prospective in bone disease management.”

https://www.ncbi.nlm.nih.gov/pubmed/31003519

https://www.mdpi.com/1422-0067/20/8/1919

Quality of life in adults enrolled in an open-label study of cannabidiol (CBD) for treatment-resistant epilepsy.

“Treatment-resistant epilepsy (TRE) is associated with low quality of life (QOL). Cannabidiol (CBD) may improve QOL, but it is unclear if such improvements are independent of improvements in seizure control. Our aim was to compare QOL at baseline and after 1 year of treatment with CBD. We hypothesized that QOL would improve independent of changes in seizure frequency (SF) or severity, mood, or adverse events. We assessed QOL using Quality of Life in Epilepsy-89 (QOLIE-89) in an open-label study of purified CBD (Epidiolex®) for the treatment of TRE. All participants received CBD, starting at 5 mg/kg/day and titrated to 50 mg/kg/day in increments of 5 mg/kg/day. We collected QOLIE-89 in adult participants at enrollment and after 1 year of treatment, or at study exit if earlier. We analyzed if the change in QOLIE-89 total score could be explained by the change in SF, seizure severity (Chalfont Seizure Severity Scale, CSSS), mood (Profile of Moods States, POMS), or adverse events (Adverse Event Profile, AEP). Associations among the variables were assessed using bivariate tests and multiple regression. Fifty-three participants completed enrollment and follow-up testing, seven at study termination. Mean QOLIE-89 total score improved from enrollment (49.4 ± 19) to follow-up (57 ± 21.3; p = .004). We also saw improvements in SF, POMS, AEP, and CSSS (all p ≤ .01). Multivariable regression results showed QOLIE-89 at follow-up associated with improvements in POMS at follow-up (p = .020), but not with AEP, CSSS, or SF (p ≥ .135). Improvement in QOL after treatment with CBD is associated with better mood but not with changes in SF, seizure severity, or AEP. Cannabidiol may have beneficial effects on QOL and mood that are independent of treatment response.”

https://www.ncbi.nlm.nih.gov/pubmed/31003195

https://www.epilepsybehavior.com/article/S1525-5050(19)30116-7/fulltext

Attenuation of Novelty-Induced Hyperactivity of Gria1-/- Mice by Cannabidiol and Hippocampal Inhibitory Chemogenetics.

Image result for frontiers in pharmacology

“Gene-targeted mice with deficient AMPA receptor GluA1 subunits (Gria1-/- mice) show robust hyperlocomotion in a novel environment, suggesting them to constitute a model for hyperactivity disorders such as mania, schizophrenia and attention deficit hyperactivity disorder. This behavioral alteration has been associated with increased neuronal activation in the hippocampus, and it can be attenuated by chronic treatment with antimanic drugs, such as lithium, valproic acid, and lamotrigine. Now we found that systemic cannabidiol strongly blunted the hyperactivity and the hippocampal c-Fos expression of the Gria1-/- mice, while not affecting the wild-type littermate controls. Acute bilateral intra-dorsal hippocampal infusion of cannabidiol partially blocked the hyperactivity of the Gria1-/- mice, but had no effect on wild-types. The activation of the inhibitory DREADD receptor hM4Gi in the dorsal hippocampus by clozapine-N-oxide robustly inhibited the hyperactivity of the Gria1-/- mice, but had no effect on the locomotion of wild-type mice. Our results show that enhanced neuronal excitability in the hippocampus is associated with pronounced novelty-induced hyperactivity of GluA1 subunit-deficient mice. When this enhanced response of hippocampal neurons to novel stimuli is specifically reduced in the hippocampus by pharmacological treatment or by chemogenetic inhibition, Gria1-/- mice recover from behavioral hyperactivity, suggesting a hippocampal dysfunction in hyperactive behaviors that can be treated with cannabidiol.”

https://www.ncbi.nlm.nih.gov/pubmed/30984001

https://www.frontiersin.org/articles/10.3389/fphar.2019.00309/full

The New Runner’s High? Examining Relationships Between Cannabis Use and Exercise Behavior in States with Legalized Cannabis

“Results indicated that the majority (81.7%) of participants endorsed using cannabis concurrently with exercise. In addition, the majority of participants who endorsed using cannabis shortly before/after exercise reported that doing so enhances their enjoyment of and recovery from exercise, and approximately half reported that it increases their motivation to exercise.” https://www.frontiersin.org/articles/10.3389/fpubh.2019.00099/abstract
“Cannabis doesn’t make you a lazy pothead, in fact, it might actually motivate you to workout: study. A new study published in the medical journal Frontiers in Public Health has found that consuming cannabis may help motivate users to exercise and improve their workouts.” https://leaderpost.com/cannabis-health/cannabis-doesnt-make-you-a-lazy-pothead-in-fact-it-might-actually-motivate-you-to-workout-study/wcm/bb0beff4-eea0-417a-8812-c5ba10841b34
“Study finds marijuana motivates people to exercise, smashing lazy stoner stereotype. Most people who use marijuana report that consuming before or after exercising improves the experience and aids in recovery, according to a new study. And those who do use cannabis to elevate their workout tend to get a healthier amount of exercise.” https://www.bostonglobe.com/news/marijuana/2019/04/16/study-finds-marijuana-motivates-people-exercise-smashing-lazy-stoner-stereotype/FHHsXxyTrTHrSisso0GC3H/story.html
“A published scientific study claims using weed before workout either “increases motivation” to exercise or “enhances recovery from exercise.”

“Exercise activates the endocannabinoid system.”   https://www.ncbi.nlm.nih.gov/pubmed/14625449

Future Aspects for Cannabinoids in Breast Cancer Therapy.

ijms-logo

“Cannabinoids (CBs) from Cannabis sativa provide relief for tumor-associated symptoms (including nausea, anorexia, and neuropathic pain) in the palliative treatment of cancer patients.

Additionally, they may decelerate tumor progression in breast cancer patients.

Indeed, the psychoactive delta-9-tetrahydrocannabinol (THC), non-psychoactive cannabidiol (CBD) and other CBs inhibited disease progression in breast cancer models.

The effects of CBs on signaling pathways in cancer cells are conferred via G-protein coupled CB-receptors (CB-Rs), CB1-R and CB2-R, but also via other receptors, and in a receptor-independent way.

THC is a partial agonist for CB1-R and CB2-R; CBD is an inverse agonist for both.

In breast cancer, CB1-R expression is moderate, but CB2-R expression is high, which is related to tumor aggressiveness. CBs block cell cycle progression and cell growth and induce cancer cell apoptosis by inhibiting constitutive active pro-oncogenic signaling pathways, such as the extracellular-signal-regulated kinase pathway.

They reduce angiogenesis and tumor metastasis in animal breast cancer models. CBs are not only active against estrogen receptor-positive, but also against estrogen-resistant breast cancer cells. In human epidermal growth factor receptor 2-positive and triple-negative breast cancer cells, blocking protein kinase B- and cyclooxygenase-2 signaling via CB2-R prevents tumor progression and metastasis.

Furthermore, selective estrogen receptor modulators (SERMs), including tamoxifen, bind to CB-Rs; this process may contribute to the growth inhibitory effect of SERMs in cancer cells lacking the estrogen receptor.

In summary, CBs are already administered to breast cancer patients at advanced stages of the disease, but they might also be effective at earlier stages to decelerate tumor progression.”

Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options

Neuronal Signaling

“Challenges in the management of ocular pain are an underappreciated topic. Currently available therapeutics lack both efficacy and clear guidelines for their use, with many also possessing unacceptable side effects. Promising novel agents would offer analgesic, anti-inflammatory, and possibly neuroprotective actions; have favorable ocular safety profiles; and show potential in managing neuropathic pain.

Growing evidence supports a link between the endocannabinoid system (ECS) and a range of physiological and disease processes, notably those involving inflammation and pain. Both preclinical and clinical data suggest analgesic and anti-inflammatory actions of cannabinoids and ECS-modifying drugs in chronic pain conditions, including those of neuropathic origin.

The ECS is present ubiquitously through the body, including a range of ocular tissues, and represents a promising target in the treatment of several physiological and pathophysiologic processes in the eye including, but not limited to, pain, inflammation, and neuronal damage. ”

http://www.neuronalsignaling.org/content/2/4/NS20170144

Δ9-tetrahydrocannabinol attenuates oxycodone self-administration under extended access conditions.

Neuropharmacology

“Growing nonmedical use of prescription opioids is a global problem, motivating research on ways to reduce use and combat addiction.

Medical cannabis (“medical marijuana”) legalization has been associated epidemiologically with reduced opioid harms and cannabinoids have been shown to modulate effects of opioids in animal models.

This study was conducted to determine if Δ9-tetrahydrocannabinol (THC) enhances the behavioral effects of oxycodone.

Together these data demonstrate additive effects of THC and oxycodone and suggest the potential use of THC to enhance therapeutic efficacy, and to reduce the abuse, of opioids.”

https://www.ncbi.nlm.nih.gov/pubmed/30980837

“Δ9-tetrahydrocannabinol (THC) enhances the antinociceptive effects of oxycodone. Vaporized and injected THC reduces oxycodone self-administration. Cannabinoids may reduce opioid use for analgesia. Cannabinoids may reduce nonmedical opioid use.”  

https://www.sciencedirect.com/science/article/pii/S0028390819301212?via%3Dihub