The psychedelic effects of cannabis: A review of the literature

pubmed logo

“Cannabis and classic psychedelics are controlled substances with emerging evidence of efficacy in the treatment of a variety of psychiatric illnesses. Cannabis has largely not been regarded as having psychedelic effects in contemporary literature, despite many examples of historical use along with classic psychedelics to attain altered states of consciousness.

Research into the “psychedelic” effects of cannabis, and delta-9-tetrahydrocannabinol (THC) in particular, could prove helpful for assessing potential therapeutic indications and elucidating the mechanism of action of both cannabis and classic psychedelics.

This review aggregates and evaluates the literature assessing the capacity of cannabis to yield the perceptual changes, aversiveness, and mystical experiences more typically associated with classic psychedelics such as psilocybin. This review also provides a brief contrast of neuroimaging findings associated with the acute effects of cannabis and psychedelics.

The available evidence suggests that high-THC cannabis may be able to elicit psychedelic effects, but that these effects may not have been observed in recent controlled research studies due to the doses, set, and settings commonly used. Research is needed to investigate the effects of high doses of THC in the context utilized in therapeutic studies of psychedelics aimed to occasion psychedelic and/or therapeutic experiences.

If cannabis can reliably generate psychedelic experiences under these conditions, high-THC dose cannabis treatments should be explored as potential adjunctive treatments for psychiatric disorders and be considered as an active comparator in clinical trials involving traditional psychedelic medications.”

https://pubmed.ncbi.nlm.nih.gov/37947321/

https://journals.sagepub.com/doi/10.1177/02698811231209194

“Psychedelic drugs in the treatment of psychiatric disorders”

https://pubmed.ncbi.nlm.nih.gov/37615227/

The holistic effects of medical cannabis compared to opioids on pain experience in Finnish patients with chronic pain

pubmed logo

“Background: Medical cannabis (MC) is increasingly used for chronic pain, but it is unclear how it aids in pain management. Previous literature suggests that MC could holistically alter the pain experience instead of only targeting pain intensity. However, this hypothesis has not been previously systematically tested.

Method: A retrospective internet survey was used in a sample of Finnish chronic pain patients (40 MC users and 161 opioid users). The patients evaluated statements describing positive and negative phenomenological effects of the medicine. The two groups were propensity score matched to control for possible confounding factors.

Results: Exploratory factor analysis revealed three experience factors: Negative Side Effects, Positive Holistic Effects, and Positive Emotional Effects. The MC group (matched n = 39) received higher scores than the opioid group (matched n = 39) in Positive Emotional Effects with large effect size (Rank-Biserial Correlation RBC = .71, p < .001), and in Holistic Positive Effects with medium effect size (RBC = .47, p < .001), with no difference in Negative Side Effects (p = .13). MC and opioids were perceived as equally efficacious in reducing pain intensity. Ratings of individual statements were exploratively examined in a post hoc analysis.

Conclusion: MC and opioids were perceived to be equally efficacious in reducing pain intensity, but MC additionally positively affected broader pain-related factors such as emotion, functionality, and overall sense of wellbeing. This supports the hypothesis that MC alleviates pain through holistically altering the pain experience.”

https://pubmed.ncbi.nlm.nih.gov/37941019/

“The results of the present study support the hypothesis that the effects of MC on pain experience are more holistic than those of opioids. MC may alleviate pain through affecting a broad range of pain-related experience experiental factors such as relaxation, improved sleep and mood, being able not to react to the pain, as well as a sense of control. These holistic effects of MC could explain the inconsistencies in clinical trials, where focus has mainly been on pain intensity instead of broader pain phenomenology. The results highlight the importance of taking these holistic effects into account in treating patients with MC, considering them as part of the therapeutic process.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00207-7

Dysregulation of the endogenous cannabinoid system following opioid exposure

pubmed logo

“Rates of opioid-related deaths and overdoses in the United States are at record-high levels. Thus, novel neurobiological targets for the treatment of OUD are greatly needed. Given the close interaction between the endogenous opioid system and the endocannabinoid system (ECS), targeting the ECS may have therapeutic potential in OUD.

The various components of the ECS, including cannabinoid receptors, their lipid-derived endogenous ligands (endocannabinoids [eCBs]), and the related enzymes, present potential targets for developing new medications in OUD treatment.

The purpose of this paper is to review the clinical and preclinical literature on the dysregulation of the ECS after exposure to opioids. We review the evidence of ECS dysregulation across various study types, exposure protocols, and measurement protocols and summarize the evidence for dysregulation of ECS components at specific brain regions.

Preclinical research has shown that opioids disrupt various ECS components that are region-specific. However, the results in the literature are highly heterogenous and sometimes contradictory, possibly due to variety of different methods used. Further research is needed before a confident conclusion could be made on how exposure to opioids can affect ECS components in various brain regions.”

https://pubmed.ncbi.nlm.nih.gov/37931479/

https://www.sciencedirect.com/science/article/abs/pii/S016517812300536X?via%3Dihub

Cannabis Use Is Associated With Fewer Filled Opioid Prescriptions After Treatment of Proximal Humerus Fractures

pubmed logo

“The purpose of this study was to use a large claims database to determine if there is a difference in opioid use after operative intervention for proximal humerus fractures in patients with known cannabis use compared with those who do not report cannabis use. The PearlDiver database was queried to find all patients who underwent proximal humerus open reduction and internal fixation. A group of patients with reported cannabis use or dependence was matched to a cohort without known cannabis use. Between the two groups, differences in the number of opioid prescriptions filled in the postoperative period (within 3 days), the morphine milligram equivalents (MMEs) prescribed in total and per day, and the number of opioid prescription refills were explored. There were 66,445 potential control patients compared with 1260 potential study patients. After conducting the propensity score match, a total of 1245 patients were included in each group. The patients in the cannabis group filled fewer opioid prescriptions (P=.045) and were prescribed fewer total MMEs (P=.044) in the first 3 days postoperatively. Results of this study indicate that patients who use cannabis products may use fewer opioids after proximal humerus open reduction and internal fixation.”

https://pubmed.ncbi.nlm.nih.gov/37921529/

https://journals.healio.com/doi/10.3928/01477447-20231027-07

Stigma-related barriers to medical cannabis as harm reduction for substance use disorder: Obstacles and opportunities for improvement

pubmed logo

“Emerging evidence on substituting cannabis for more harmful drugs has led to cannabis becoming a novel harm-reduction strategy for combating the current drug poisoning crisis. However, the authorization of medical cannabis as part of a harm-reduction approach and recovery strategy has significant implementation barriers rooted in longstanding stigma towards cannabis. Through a multi-discipline collaboration of Canadian clinicians and academic researchers, we highlighted stigma barriers and opportunities to address these barriers to elicit improved delivery of medical cannabis as a harm-reduction therapy within existing therapeutic frameworks. Evidence from existing literature and real-world experiences converged on three key themes related to stigma barriers: (1) Lack of medical cannabis education within the healthcare community, (2) lack of consensus and coordination among harm-reduction services and (3) access to medical cannabis. We highlight potential solutions to these issues, including improved healthcare education, better coordination between care teams and suggestions for improving access. Through this discussion, we hope to contribute to reducing the stigma around using medical cannabis as a harm-reduction strategy for individuals with a substance use disorder and consider new perspectives in policy development surrounding recovery services.”

https://pubmed.ncbi.nlm.nih.gov/37767954/

https://onlinelibrary.wiley.com/doi/10.1111/inm.13231

The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses

pubmed logo

“Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.”

https://pubmed.ncbi.nlm.nih.gov/37671673/

https://www.cambridge.org/core/journals/psychological-medicine/article/endocannabinoid-system-as-a-putative-target-for-the-development-of-novel-drugs-for-the-treatment-of-psychiatric-illnesses/52BFF0428246735E980829CFE8F03C67

Delta-9-tetrahydrocannabinol modulates pain sensitivity among persons receiving opioid agonist therapy for opioid use disorder: A within-subject, randomized, placebo-controlled laboratory study

pubmed logo

“The opioid and cannabinoid receptor systems are inextricably linked-overlapping at the anatomical, functional and behavioural levels. Preclinical studies have reported that cannabinoid and opioid agonists produce synergistic antinociceptive effects. Still, there are no experimental data on the effects of cannabinoid agonists among humans who receive opioid agonist therapies for opioid use disorder (OUD). We conducted an experimental study to investigate the acute effects of the delta-9-tetrahydrocannabinol (THC) among persons receiving methadone therapy for OUD. Using a within-subject, crossover, human laboratory design, 25 persons on methadone therapy for OUD (24% women) were randomly assigned to receive single oral doses of THC (10 or 20 mg, administered as dronabinol) or placebo, during three separate 5-h test sessions. Measures of experimental and self-reported pain sensitivity, abuse potential, cognitive performance and physiological effects were collected. Mixed-effects models examined the main effects of THC dose and interactions between THC (10 and 20 mg) and methadone doses (low-dose methadone defined as <90 mg/day; high dose defined as >90 mg/day). Results demonstrated that, for self-reported rather than experimental pain sensitivity measures, 10 mg THC provided greater relief than 20 mg THC, with no substantial evidence of abuse potential, and inconsistent dose-dependent cognitive adverse effects. There was no indication of any interaction between THC and methadone doses. Collectively, these results provide valuable insights for future studies aiming to evaluate the risk-benefit profile of cannabinoids to relieve pain among individuals receiving opioid agonist therapy for OUD, a timely endeavour amidst the opioid crisis.”

https://pubmed.ncbi.nlm.nih.gov/37644897/

https://onlinelibrary.wiley.com/doi/10.1111/adb.13317

An answered call for aid? Cannabinoid clinical framework for the opioid epidemic

pubmed logo

“Background: The opioid crisis continues in full force, as physicians and caregivers are desperate for resources to help patients with opioid use and chronic pain disorders find safer and more accessible non-opioid tools.

Main body: The purpose of this article is to review the current state of the opioid epidemic; the shifting picture of cannabinoids; and the research, policy, and current events that make opioid risk reduction an urgent public health challenge. The provided table contains an evidence-based clinical framework for the utilization of cannabinoids to treat patients with chronic pain who are dependent on opioids, seeking alternatives to opioids, and tapering opioids.

Conclusion: Based on a comprehensive review of the literature and epidemiological evidence to date, cannabinoids stand to be one of the most interesting, safe, and accessible tools available to attenuate the devastation resulting from the misuse and abuse of opioid narcotics. Considering the urgency of the opioid epidemic and broadening of cannabinoid accessibility amidst absent prescribing guidelines, the authors recommend use of this clinical framework in the contexts of both clinical research continuity and patient care.”

https://pubmed.ncbi.nlm.nih.gov/37587466/

“Resistance to cannabis-based medicines for the opioid epidemic may have many origins, particularly the stigma associated with recreational cannabis use. That said, the evidence to date suggests that it is time for a sea change in the clinical approach to cannabis for pain management and OUD. Throughout the history of science and clinical medicine, there have been transformative changes that were initially considered heretical: hand hygiene as a means to prevent infection prior to germ theory, therapy for H. pylori to combat peptic ulcer disease, and even the genetic basis of cancer were all dismissed by their era’s established medical communities. Similarly, we face great resistance to the implementation of CBD and other cannabinoids for treatment-resistant chronic illnesses, despite the compelling evidence, strong overall safety profile, and urgent need. Many of our patients have already begun their own self-guided journey into pain management with cannabinoids and the burden is now on providers to consolidate the information available, conduct more rigorous research, form best practices, and implement guidelines that will inform both the field and those we care for without stigma.”

https://harmreductionjournal.biomedcentral.com/articles/10.1186/s12954-023-00842-6

Cannabis Versus Opioids for Pain

pubmed logo

“In the human body, pain is an inherent alarm system that activates when there is actual or potential damage, directing an individual’s attention toward the issue. Pain is a frequently cited reason for seeking healthcare or medical assistance. Pain encompasses various elements, including nociception, the perception of pain, suffering, and pain behaviors. Although pain is a fundamental mechanism, it can become burdensome when it persists for an extended period, leading to suffering and pain-related behaviors. Chronic and unrelenting pain can cause psychological, physical, and emotional distress, adding further strain to individuals.

The search for an ideal pain relief medication has been an ongoing endeavor since ancient times, as certain types of pain still lack definitive treatment options. Several strategies have been developed to address intractable pain that does not respond to nonsteroidal anti-inflammatory drugs (NSAIDs), with opioids being the mainstay in many pain management protocols. In recent years, there has been growing and promising evidence suggesting the potential effectiveness of cannabinoids in the management of chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/34424653/

Cannabis use may attenuate neurocognitive performance deficits resulting from methamphetamine use disorder

pubmed logo

“Objective: Methamphetamine and cannabis are two widely used, and frequently co-used, substances with possibly opposing effects on the central nervous system. Evidence of neurocognitive deficits related to use is robust for methamphetamine and mixed for cannabis. Findings regarding their combined use are inconclusive. We aimed to compare neurocognitive performance in people with lifetime cannabis or methamphetamine use disorder diagnoses, or both, relative to people without substance use disorders.

Method: 423 (71.9% male, aged 44.6 ± 14.2 years) participants, stratified by presence or absence of lifetime methamphetamine (M-/M+) and/or cannabis (C-/C+) DSM-IV abuse/dependence, completed a comprehensive neuropsychological, substance use, and psychiatric assessment. Neurocognitive domain T-scores and impairment rates were examined using multiple linear and binomial regression, respectively, controlling for covariates that may impact cognition.

Results: Globally, M+C+ performed worse than M-C- but better than M+C-. M+C+ outperformed M+C- on measures of verbal fluency, information processing speed, learning, memory, and working memory. M-C+ did not display lower performance than M-C- globally or on any domain measures, and M-C+ even performed better than M-C- on measures of learning, memory, and working memory.

Conclusions: Our findings are consistent with prior work showing that methamphetamine use confers risk for worse neurocognitive outcomes, and that cannabis use does not appear to exacerbate and may even reduce this risk. People with a history of cannabis use disorders performed similarly to our nonsubstance using comparison group and outperformed them in some domains. These findings warrant further investigation as to whether cannabis use may ameliorate methamphetamine neurotoxicity.”

https://pubmed.ncbi.nlm.nih.gov/37553288/

https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/cannabis-use-may-attenuate-neurocognitive-performance-deficits-resulting-from-methamphetamine-use-disorder/8AC3E796BDBD8E387D685EB892C63244