Tetrahydrocannabinol:Cannabidiol Oromucosal Spray for Multiple Sclerosis-Related Resistant Spasticity in Daily Practice.

Image result for European Neurology

“Tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (Sativex®) is an add-on therapy for moderate-to-severe multiple sclerosis (MS)-related drug-resistant spasticity (MSS).

In everyday clinical practice, THC:CBD oromucosal spray provided symptomatic relief of MSS and related troublesome symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/27732980

Cannabinoid Buccal Spray for Chronic Non-Cancer or Neuropathic Pain: A Review of Clinical Effectiveness, Safety, and Guidelines [Internet].

 

Image result for Canadian Agency for Drugs and Technologies in Health

“Chronic pain is a complex, severe and debilitating condition which can lead to a considerable reduction in function and quality of life. Patients may present with different forms of chronic pain resulting from a number of identifiable causes, including pain due to lesion or dysfunction of the nerves, spinal cord or brain (neuropathic pain), or persistent pain caused by other non-malignant conditions, such as low-back pain or pain due to inflammation of various arthritic conditions. The prevalence of chronic non-cancer pain or neuropathic pain among Canadian adults is not well known. However, prevalence estimates using large, population-based questionnaires have shown that 4% to 8% of the general population in the developed world experiences neuropathic pain, suggesting that approximately two million Canadians may be affected by this disabling condition. Chronic pain is of particular concern among Canadians aged 65 years and older; based on cross-sectional data from the 1996/1997 National Population Health Survey and the 2005 Canadian Community Health Survey, chronic pain was estimated to affect 27% and 38% of seniors living in households and health care institutions, respectively. A number of treatments are available for the management of neuropathic pain or chronic non-cancer pain. These include tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors (duloxetine, venlafaxine), anticonvulsants (pregabalin, gabapentin, carbamazepine, phenytoin), topical lidocaine, and opioid analgesics. However, these medications are associated with limited pain relief and numerous adverse effects. The therapeutic use of several synthetic cannabinoid products for the symptomatic relief of chronic pain has also been studied. In particular, a combination of two products, delta-9-tetrahydrocannabinol and cannabidiol (THC:CBD) marketed under the name Sativex® is available for use as a buccal spray. This cannabis-based agent is approved for use in Canada as an add-on therapy for adult patients experiencing muscle spasticity caused by multiple sclerosis (MS), and it has received a Notice of Compliance with conditions for MS-related central neuropathic pain and the treatment of cancer pain unresponsive to opioids. The purpose of this review is to examine the available published literature relating to THC:CBD buccal spray for the treatment of chronic non-cancer or neuropathic pain in adults.”

https://www.ncbi.nlm.nih.gov/pubmed/27831665

Targeting the Endocannabinoid System in Psychiatric Illness.

Image result for J Clin Psychopharmacol

“Prevalence of psychiatric disorders continues to rise globally, yet remission rates and patient outcome remain less than ideal. As a result, novel treatment approaches for these disorders are necessary to decrease societal economic burden, as well as increase individual functioning.

The recent discovery of the endocannabinoid system has provided an outlet for further research into its role in psychiatric disorders, because efficacy of targeted treatments have been demonstrated in medical illnesses, including cancers, neuropathic pain, and multiple sclerosis.

The present review will investigate the role of the endocannabinoid system in psychiatric disorders, specifically schizophrenia, depressive, anxiety, and posttraumatic stress disorders, as well as attention-deficit hyperactivity disorder.

Controversy remains in prescribing medicinal cannabinoid treatments due to the fear of adverse effects. However, one must consider all potential limitations when determining the safety and tolerability of cannabinoid products, specifically cannabinoid content (ie, Δ-tetrahydrocannabinol vs cannabidiol) as well as study design.

The potential efficacy of cannabinoid treatments in the psychiatric population is an emerging topic of interest that provides potential value going forward in medicine.”

Cannabinoids, inflammation, and fibrosis.

Image result for FASEB J.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed.

The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents.

Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

https://www.ncbi.nlm.nih.gov/pubmed/27435265

WIN 55,212-2 Inhibits the Epithelial Mesenchymal Transition of Gastric Cancer Cells via COX-2 Signals.

Image result for Cell Physiol Biochem

“Cannabinoids (the active components of Cannabis sativa) and their derivatives have received considerable interest due to reports that they can affect the tumor growth, migration, and metastasis.

Previous studies showed that the cannabinoid agonist WIN 55,212-2 (WIN) was associated with gastric cancer (GC) metastasis, but the mechanisms were unknown.

RESULTS:

WIN inhibited cell migration, invasion, and epithelial to mesenchymal transition (EMT) in GC. WIN treatment resulted in the downregulation of cyclooxygenase-2 (COX-2) expression and decreased the phosphorylation of AKT, and inhibited EMT in SGC7901 cells. Decreased expression of COX-2 and vimentin, and increased expression of E-cadherin, which was induced by WIN, were normalized by overexpression of AKT, suggesting that AKT mediated, at least partially, the WIN suppressed EMT of GC cells.

CONCLUSION:

WIN can inhibit the EMT of GC cells through the downregulation of COX-2.”

https://www.ncbi.nlm.nih.gov/pubmed/27802436

The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats.

Image result for neuroscience journal logo

“An acute brain insult can cause a spectrum of primary and secondary pathologies including increased risk for epilepsy, mortality and neurodegeneration.

The endocannabinoid system, involved in protecting the brain against network hyperexcitability and excitotoxicity, is profoundly dysregulated by acute brain insults.

We hypothesize that post-insult dysregulation of the endocannabinoid signaling may contribute to deleterious effects of an acute brain injury and potentiation of endocannabinoid transmission soon after an insult may reduce its pathological outcomes.

Thus, a brief pharmacological stimulation of the endocannabinoid system soon after a brain insult exerts beneficial effects on its pathological outcome though does not prevent epileptogenesis.”

https://www.ncbi.nlm.nih.gov/pubmed/27520083

Exocannabinoids effect on in vitro bovine oocyte maturation via activation of AKT and ERK1/2.

Image result for reproduction journal

“Endocannabinoids are known to mediate practically all reproductive events in mammals; however, little is known about their role in oocyte maturation. Through RT-PCR and immunocytochemistry, this study confirms the presence of CB1 and CB2 cannabinoidreceptors in bovine oocytes and shows how exposure to the exogenous cannabinoids HU-210 and THC during their in vitro maturation (IVM) activates the phosphorylation of AKT and ERK1/2 proteins associated with the resumption of meiosis. Although supplementation with HU-210 or THC during IVM did not increase blastocyst yields, the expression of interferon tau (IFNτ) and gap junction alpha-1 protein (GJA1) was enhanced at the blastocyst stage. Our data suggest that cannabinoid agonists may be useful IVM supplements as their presence during oocyte maturation upregulates the expression in blastocysts of key genes for embryo quality.”

https://www.ncbi.nlm.nih.gov/pubmed/27798282

Role of cannabis in digestive disorders.

Image result for European Journal of Gastroenterology & Hepatology

“Cannabis sativa, a subspecies of the Cannabis plant, contains aromatic hydrocarbon compounds called cannabinoids.

Tetrahydrocannabinol is the most abundant cannabinoid and is the main psychotropic constituent.

Cannabinoids activate two types of G-protein-coupled cannabinoid receptors: cannabinoid type 1 receptor and cannabinoid type 2 receptor.

There has been ongoing interest and development in research to explore the therapeutic potential of cannabis. Tetrahydrocannabinol exerts biological functions on the gastrointestinal (GI) tract.

Cannabis has been used for the treatment of GI disorders such as abdominal pain and diarrhea.

The endocannabinoid system (i.e. endogenous circulating cannabinoids) performs protective activities in the GI tract and presents a promising therapeutic target against various GI conditions such as inflammatory bowel disease (especially Crohn’s disease), irritable bowel syndrome, and secretion and motility-related disorders.

The present review sheds light on the role of cannabis in the gut, liver, and pancreas and also on other GI symptoms, such as nausea and vomiting, cannabinoid hyperemesis syndrome, anorexia, weight loss, and chronic abdominal pain.

Although the current literature supports the use of marijuana for the treatment of digestive disorders, the clinical efficacy of cannabis and its constituents for various GI disorders remains unclear.”

https://www.ncbi.nlm.nih.gov/pubmed/27792038

Cannabis improves night vision: a case study of dark adaptometry and scotopic sensitivity in kif smokers of the Rif mountains of northern Morocco.

Image result for journal of ethnopharmacology

“Previous reports have documented an improvement in night vision among Jamaican fishermen after ingestion of a crude tincture of herbal cannabis, while two members of this group noted that Moroccan fishermen and mountain dwellers observe an analogous improvement after smoking kif, sifted Cannabis sativa mixed with tobacco (Nicotiana rustica).

Field-testing of night vision has become possible with a portable device, the LKC Technologies Scotopic Sensitivity Tester-1 (SST-1).

This study examines the results of double-blinded graduated THC administration 0-20 mg (as Marinol) versus placebo in one subject on measures of dark adaptometry and scotopic sensitivity.  Analogous field studies were performed in Morocco with the SST-1 in three subjects before and after smoking kif.

In both test situations, improvements in night vision measures were noted after THC or cannabis. It is believed that this effect is dose-dependent and cannabinoid-mediated at the retinal level.

Further testing may assess possible clinical application of these results in retinitis pigmentosa or other conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/15182912

Cortical and spinal excitability in patients with multiple sclerosis and spasticity after oromucosal cannabinoid spray.

 

Image result for journal of the neurological sciences

“Delta-9-tetrahydrocannabinol and cannabidiol (THC:CBD) oromucosal spray (Sativex®) has been recently approved for the management of treatment-resistant multiple sclerosis (MS) spasticity.

Although the symptomatic relief of Sativex® on MS-spasticity has been consistently demonstrated, the pathogenetic implications remain unclear and the few electrophysiological studies performed to address this topic yielded controversial results.

We therefore aimed to investigate the mechanisms underpinning the modulation of spastic hypertonia by Sativex®, at both central and spinal levels, through an extensive neurophysiological battery in patients with MS.

Our results confirm the clinical benefit of Sativex® on spastic hypertonia and demonstrate that it might modulate both cortical and spinal circuits, arguably in terms of both excitation and inhibition.

We suggest that the clinical benefit was likely related to a net increase of inhibition at cortical level that, in turn, might have influenced spinal excitability.”

https://www.ncbi.nlm.nih.gov/pubmed/27772772