Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon

Abstract

“Colorectal cancer is an increasingly important cause of death in Western countries. Endocannabinoids inhibit colorectal carcinoma cell proliferation in vitro. In this paper, we investigated the involvement of endocannabinoids on the formation of aberrant crypt foci (ACF, earliest preneoplastic lesions) in the colon mouse in vivo. ACF were induced by azoxymethane (AOM); fatty acid amide hydrolase (FAAH) and cannabinoid receptor messenger ribonucleic acid (mRNA) levels were analyzed by the quantitative reverse transcription polymerase chain reaction (RT-PCR); endocannabinoid levels were measured by liquid chromatography-mass spectrometry; caspase-3 and caspase-9 expressions were measured by Western blot analysis. Colonic ACF formation after AOM administration was associated with increased levels of 2-arachidonoylglycerol (with no changes in FAAH and cannabinoid receptor mRNA levels) and reduction in cleaved caspase-3 and caspase-9 expression. The FAAH inhibitor N-arachidonoylserotonin increased colon endocannabinoid levels, reduced ACF formation, and partially normalized cleaved caspase-3 (but not caspase-9) expression. Notably, N-arachidonoylserotonin completely prevented the formation of ACF with four or more crypts, which have been show to be best correlated with final tumor incidence. The effect of N-arachidonoylserotonin on ACF formation was mimicked by the cannabinoid receptor agonist HU-210. No differences in ACF formation were observed between CB(1) receptor-deficient and wild-type mice. It is concluded that pharmacological enhancement of endocannabinoid levels (through inhibition of endocannabinoid hydrolysis) reduces the development of precancerous lesions in the mouse colon. The protective effect appears to involve caspase-3 (but not caspase-9) activation.

Cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increasing evidence shows antitumor actions of cannabinoid agonists on several tumor cells in vitro and in animal models [4, 5]. The main psychotropic cannabinoid is Δ9-tetrahydrocannabinol, which exerts its biological effects mainly by activating two G protein-coupled cannabinoid receptors, named CB1 and CB2 receptors [5]. Endogenous ligands for the cannabinoid receptors have been identified; the best known are arachidonylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG) [46]. When released, anandamide and 2-AG are removed from extracellular compartments by a carrier-mediated reuptake process, and once within the cell, both endocannabinoids are hydrolyzed by intracellular hydrolytic enzymes of which the enzyme fatty acid amide hydrolase (FAAH) is capable of recognizing both compounds as substrates [5, 6].

The proposed mechanisms of the antitumoral effect of cannabinoids are complex and may involve induction of apoptosis in tumor cells, antiproliferative actions, and an antimetastatic effects through inhibition of angiogenesis and tumor cell migration [6]. Concerning the gastrointestinal tract, it has been shown that cannabinoid receptor agonists, mostly via CB1 activation, potently inhibit the cell proliferation of colorectal carcinoma cell lines [7]. Furthermore, compounds capable of inhibiting endocannabinoid degradation and hence of prolonging the lifespan of endocannabinoids only when and where these compounds are produced to exert physiological or pathophysiological functions also inhibit colorectal carcinoma growth in vitro [7].

In summary, the present study provides strong evidence that enhancement of colon endocannabinoid levels through pharmacological inhibition of their enzymatic hydrolysis may be protective against preneoplastic lesions in the mouse colon; a condition that, like humans adenomatous polyps and colorectal carcinoma [7], is accompanied by an elevated endocannabinoid tone. This protective effect could be due to indirect activation of one or more of the several targets proposed to date for the endocannabinoids and appears to involve caspase-3 activation and subsequent apoptosis of colon preneoplastic cells. Further studies will be required to investigate if cannabinoid CB2 receptors are involved in the protective effects of AA-5-HT and HU210 and if these effects have any therapeutic relevance for the treatment of human colon carcinoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755791/

Leave a Reply

Your email address will not be published. Required fields are marked *