Appraising the “entourage effect”: antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer.

Image result for Biochem Pharmacol.

“Breast cancer is the second leading cause of death among women. Although early diagnosis and development of new treatments have improved their prognosis, many patients present innate or acquired resistance to current therapies. New therapeutic approaches are therefore warranted for the management of this disease.

Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer. Most of these studies have been conducted with pure compounds, mainly Δ9-tetrahydrocannabinol (THC).

The cannabis plant, however, produces hundreds of other compounds with their own therapeutic potential and the capability to induce synergic responses when combined, the so-called “entourage effect”.

Here, we compared the antitumor efficacy of pure THC with that of a botanical drug preparation (BDP). The BDP was more potent than pure THC in producing antitumor responses in cell culture and animal models of ER+/PR+, HER2+ and triple-negative breast cancer. This increased potency was not due to the presence of the 5 most abundant terpenes in the preparation.

While pure THC acted by activating cannabinoid CB2 receptors and generating reactive oxygen species, the BDP modulated different targets and mechanisms of action. The combination of cannabinoids with estrogen receptor- or HER2-targeted therapies (tamoxifen and lapatinib, respectively) or with cisplatin, produced additive antiproliferative responses in cell cultures. Combinations of these treatments in vivo showed no interactions, either positive or negative.

Together, our results suggest that standardized cannabis drug preparations, rather than pure cannabinoids, could be considered as part of the therapeutic armamentarium to manage breast cancer.”

Anti-Tumorigenic Properties of Omega-3 Endocannabinoid Epoxides.

Journal of Medicinal Chemistry

“Accumulating studies have linked inflammation to tumor progression.

Dietary omega-3 fatty acids including docosahexaenoic acid (DHA) have been shown to suppress tumor growth through their conversion to epoxide metabolites. Alternatively, DHA is converted enzymatically into docosahexaenoylethanolamide (DHEA), an endocannabinoid with anti-proliferative activity.

Recently, we reported a novel class of anti-inflammatory DHEA-epoxides (EDP-EAs) that contain both ethanolamide and epoxide moieties. Herein we evaluate the anti-tumorigenic properties of EDP-EAs in an osteosarcoma model.

First, we show ~80% increase in EDP-EAs in metastatic lungs versus normal mouse lungs. We found significant differences in the apoptotic and anti-migratory potency of the different EDP-EA regioisomers, which are partly mediated through cannabinoid receptor 1 (CB1).

Furthermore, we synthesized derivatives of the most pro-apoptotic regioisomer. These derivatives had reduced hydrolytic susceptibility to fatty acid-amide hydrolase and increased CB1 binding.

Collectively, we report a novel class of EDP-EAs that exhibit anti-angiogenic, anti-tumorigenic and anti-migratory properties in osteosarcoma.”

https://www.ncbi.nlm.nih.gov/pubmed/29856219

https://pubs.acs.org/doi/10.1021/acs.jmedchem.8b00243

“Omega-3 Fatty Byproducts May Have Anticancer Effects.https://scienceblog.com/502227/omega-3-fatty-byproducts-may-have-anticancer-effects/
“Products of omega-3 fatty acid metabolism may have anticancer effects, study shows” https://medicalxpress.com/news/2018-07-products-omega-fatty-acid-metabolism.html
“Omega-3-derived cannabinoid may stop cancer. New research suggests that the body’s natural pain-killer, the “endocannabinoid system,” may also have cancer-fighting properties when “activated” by omega-3 fatty acids.” https://www.medicalnewstoday.com/articles/322482.php
“Products of omega-3 fatty acid metabolism may have anticancer effects” https://www.sciencedaily.com/releases/2018/07/180713220137.htm

Involvement of the CB2 cannabinoid receptor in cell growth inhibition and G0/G1 cell cycle arrest via the cannabinoid agonist WIN 55,212-2 in renal cell carcinoma.

Image result for bmc cancer

“The anti-tumor properties of cannabinoids have been investigated in many in vitro and in vivo studies. Many of these anti-tumor effects are mediated via cannabinoid receptor types 1 and 2 (CB1 and CB2), comprising the endocannabinoid system (ECS).

In this study, we investigated the ECS based on CB 1 and CB 2 receptor gene and protein expression in renal cell carcinoma (RCC) cell lines. In view of their further use for potential treatments, we thus investigated the roles of CB1 and CB2 receptors in the anti-proliferative action and signal transduction triggered by synthetic cannabinoid agonists [such as JWH-133 and WIN 55,212-2 (WIN-55)] in RCC cell lines.

RESULTS:

The CB1 and CB2 genes expression was shown by real-time PCR and flow cytometric and western blot analysis indicating a higher level of CB2 receptor as compared to CB1 in RCC cells. Immunocytochemical staining also confirmed the expression of the CB1 and CB2 proteins. We also found that the synthetic cannabinoid agonist WIN-55 exerted anti-proliferative and cytotoxic effects by inhibiting the growth of RCC cell lines, while the CB2 agonist JWH-133 did not. Pharmacologically blocking the CB1 and CB2 receptors with their respective antagonists SR141716A and AM-630, followed by the WIN-55 treatment of RCC cells allowed uncovering the involvement of CB2, which led to an arrest in the G0/G1 phase of the cell cycle and apoptosis.

CONCLUSIONS:

This study elucidated the involvement of CB2 in the in vitro inhibition of RCC cells, and future applications of CB2agonists in the prevention and management of RCC are discussed.

In summary, our study shows the involvement of CB2 receptor in the in vitro inhibition of RCC cells. This knowledge will be useful to unravel the future applications of CB2receptor and its agonists in the prevention and management of RCC.”

Novel therapeutic applications of cannabinoids in cancer disease

oatext

“The present review shows that cannabinoids exert their anti-cancer effects in a number of ways and in a variety of tissues.

The endocannabinoid system is an almost ubiquitous signalling system involved in the control of cell fate. Recent studies have investigated the possibility that drugs targeting the endocannabinoid system might be used to retard or block cancer growth.

The endocannabinoids have been shown to inhibit the growth of tumour cells in culture and animal models by modulating key cell signalling pathways. Therefore, the present review indicated that cannabinoids exert their anti-cancer effects in a number of ways and in a variety of tissues.

  • Triggering cell death, through a mechanism called apoptosis
  • Stopping cells from dividing
  • Preventing new blood vessels from growing into tumours
  • Reducing the chances of cancer cells spreading through the body, by stopping cells from moving or invading neighbouring tissue
  • Speeding up the cell’s internal ‘waste disposal machine’ – a process known as autophagy – which can lead to cell death

Furthermore, the novel therapeutic application of cannabinoids in cancer disease, described here, strongly support the idea that cannabinoids may induce benefical effect in cancer treatment.”

http://www.oatext.com/novel-therapeutic-applications-of-cannabinoids-in-cancer-disease.php

Cannabinoids as potential new therapy for the treatment of gliomas

Image result for researchgate
“Gliomas constitute the most frequent and malignant primary brain tumors. Current standard therapeutic strategies (surgery, radiotherapy and chemotherapeutics, e.g., temozolomide, carmustin or carboplatin) for their treatment are only palliative and survival diagnosis is normally 6-12 months.
The development of new therapeutic strategies for the management of gliomas is therefore essential.
Interestingly, cannabinoids have been shown to exert antiproliferative effects on a wide spectrum of cells in culture.
Of interest, cannabinoids have displayed a great potency in reducing glioma tumor growth either in vitro or in animal experimental models, curbing the growth of xenografts generated by subcutaneous or intratecal injection of glioma cells in immune-deficient mice.
Moreover, cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of nontransformed counterparts.
A pilot clinical trial on patients with glioblastoma multiforme demonstrated their good safety profile together and remarkable antitumor effects, and may set the basis for further studies aimed at better evaluating the potential anticancer activity of cannabinoids.”

Cannabinoids as a Promising Therapeutic Approach for the Treatment of Glioblastoma Multiforme: A Literature Review

Page Header

“Gliobalstoma multiforme (GBM) or grade 4 astrocytoma is the most malignant form of primary brain tumor. Treatment of glioblastoma is difficult despite of surgery, radiotherapy and chemotherapy. Patients with glioblastoma survive for less than 12 months.

Considering to biology function of glioblastoma, researchers have recently offered new therapeutic approaches such as cannabinoid therapy for glioblastoma.

Cannabinoids are active compounds of Cannabis sativa that operate in the body similar to endogenous canabinoids –the endocannabinoids- through cell surface receptors.

It is interesting that cannabinoids could exert a wide spectrum from antiproliferative effects in condition of the cell culture, animal models of glioblastoma and clinical trials.

As a result, Cannabinoids seem to modulate intracellular signaling pathways and the endoplasmic reticulum stress response in glioma cells.

Those play antitumoral effects through apoptosis induction and inhibition of glioblastoma angiogenesis.

The goal of this study was to discuss cannabinoid therapy and also what cellular mechanisms are involved in the tumoricidal effect of the cannabinoids.

In this review article, we will focus on cannabinoids, their receptor dependent functional roles against glioblastoma acccording to growth, angiogenesis, metastasis, and future purposes in exploring new possible therapeutic opportunities.”

http://journals.sbmu.ac.ir/Neuroscience/article/view/13655

Cannabinoids in Glioblastoma Therapy: New Applications for Old Drugs

Image result for frontiers in molecular neuroscience

“Glioblastoma (GBM) is the most malignant brain tumor and one of the deadliest types of solid cancer overall. Despite aggressive therapeutic approaches consisting of maximum safe surgical resection and radio-chemotherapy, more than 95% of GBM patients die within 5 years after diagnosis. Thus, there is still an urgent need to develop novel therapeutic strategies against this disease.

Accumulating evidence indicates that cannabinoids have potent anti-tumor functions and might be used successfully in the treatment of GBM.

This review article summarizes the latest findings on the molecular effects of cannabinoids on GBM, both in vitro and in (pre-) clinical studies in animal models and patients.

The therapeutic effect of cannabinoids is based on reduction of tumor growth via inhibition of tumor proliferation and angiogenesis but also via induction of tumor cell death. Additionally, cannabinoids were shown to inhibit the invasiveness and the stem cell-like properties of GBM tumors. Recent phase II clinical trials indicated positive results regarding the survival of GBM patients upon cannabinoid treatment.

Apart from a direct killing effect on tumor cells, cannabinoids can also induce cell cycle arrest thereby inhibiting tumor cell proliferation.

In conclusion, cannabinoids show promising anti-neoplastic functions in GBM by targeting multiple cancer hallmarks such as resistance to programmed cell death, neoangiogenesis, tissue invasion or stem cell-induced replicative immortality.

The effects of cannabinoids can be potentially enhanced by combination of different cannabinoids with each other or with chemotherapeutic agents. This requires, however, a detailed understanding of cannabinoid-induced molecular mechanisms and pharmacological effects.

Ultimately, these findings might foster the development of improved therapeutic strategies against GBM and, perhaps, other diseases of the nervous system as well.”

https://www.frontiersin.org/articles/10.3389/fnmol.2018.00159/full

“Accumulating evidence indicates that cannabinoids have potent anti-tumor functions and might be used successfully in the treatment of GBM.”  https://www.ncbi.nlm.nih.gov/pubmed/29867351

INSIGHT ON THE IMPACT OF ENDOCANNABINOID SYSTEM IN CANCER: A REVIEW.

British Journal of Pharmacology banner

“In the last decades, the endocannabinoid system has attracted a great interest in medicine and cancer disease is probably one of its most promising therapeutic areas.

On the one hand, endocannabinoid system expression has been found altered in numerous types of tumours compared to healthy tissue, and this aberrant expression has been related to cancer prognosis and disease outcome, suggesting a role of this system in tumour growth and progression that depends on cancer type.

On the other hand, it has been reported that cannabinoids exert an anticancer activity by inhibiting the proliferation, migration and/or invasion of cancer cells; and also tumour angiogenesis.

The endocannabinoid system may be considered as a new therapeutic target, although further studies to fully establish the effect of cannabinoids on tumour progression remain necessary.”

https://www.ncbi.nlm.nih.gov/pubmed/29663308

The use of cannabis in supportive care and treatment of brain tumor

Issue Cover

“Anticancer Effects of Cannabinoids may be able to Prolong Life.

Cannabinoids are multitarget substances. Currently available are dronabinol (synthetic delta-9-tetrahydrocannabinol, THC), synthetic cannabidiol (CBD) the respective substances isolated and purified from cannabis, a refined extract, nabiximols (THC:CBD = 1.08:1.00); and nabilone, which is also synthetic and has properties that are very similar to those of THC.

Cannabinoids have a role in the treatment of cancer as palliative interventions against nausea, vomiting, pain, anxiety, and sleep disturbances. THC and nabilone are also used for anorexia and weight loss, whereas CBD has no orexigenic effect. The psychotropic effects of THC and nabilone, although often undesirable, can improve mood when administered in low doses. CBD has no psychotropic effects; it is anxiolytic and antidepressive.

Of particular interest are glioma studies in animals where relatively high doses of CBD and THC demonstrated significant regression of tumor volumes (approximately 50% to 95% and even complete eradication in rare cases). Concomitant treatment with X-rays or temozolomide enhanced activity further. Similarly, a combination of THC with CBD showed synergistic effects. Although many questions, such as on optimized treatment schedules, are still unresolved, today’s scientific results suggest that cannabinoids could play an important role in palliative care of brain tumor patients.

THC, a partial CB1, CB2 agonist, has the stigma of psychotropic effects that are mediated by CB1 stimulation. However, CB1 stimulation is necessary for improving mood and appetite and many other effects. At present, it is hard to imagine a better approach than adjusting THC doses individually to balance wanted versus unwanted effects. Generally, higher doses are needed to achieve analgesic and antiemetic effects. Even much higher, supraphysiologic oral doses would be needed to combat tumors.

Combinations were synergistic under many circumstances such as in pain and antitumor studies. Cannabinoids differ in their antitumor activities and probably in their mechanisms and targets, which is a rationale for combinations. However, for many pharmacological effects (except against tumors) roughly 10-times higher daily doses are needed for CBD compared to THC.

In summary, the endocannabinoid system is likely playing a crucial role in palliative care. The future will show whether an optimized treatment strategy with cannabinoids can also prolong life of brain tumor patients by their virtue to combat cancer cells.”

https://academic.oup.com/nop/article/4/3/151/2918616

“Cannabinoid Drug Prolongs the Life of Brain Tumor Patients in Phase II Trials”  https://labiotech.eu/gw-pharmaceuticals-brain-tumor/

Rimonabant Kills Colon Cancer Stem Cells without Inducing Toxicity in Normal Colon Organoids

Image result for frontiers in pharmacology

“Colorectal cancer (CRC), like other tumor types, is a highly heterogeneous disease. Within the tumor bulk, intra-tumoral heterogeneity is also ascribable to Cancer Stem Cells (CSCs) subpopulation, characterized by high chemoresistance and the unique ability to retain tumorigenic potential, thus associated to tumor recurrence. High dynamic plasticity of CSCs, makes the development of winning therapeutic strategies even more complex to completely eradicate tumor fuel.

Rimonabant, originally synthesized as antagonist/inverse agonist of Cannabinoid Receptor 1, is able to inactivate Wnt signaling, both in vitro and in vivo, in CRC models, through inhibition of p300-histone acetyltransferase activity. Since Wnt/β-Catenin pathway is the main player underlying CSCs dynamic, this finding candidates Rimonabant as potential modulator of cancer stemness, in CRC.

Overall, results from this work provided new insights on anti-tumor efficacy of Rimonabant, strongly suggesting that it could be a novel lead compound for CRC treatment.

 Anti-tumor action of cannabinoids in CRC was strongly supported by several authors.
The Endocannabinoid (EC) system role in the progression of CRC has been analyzed in vivo in the mouse model of azoxymethane-induced colon carcinogenesis, where cannabinoids-mediated reduction of precancerous lesions in the mouse colon was found.
In CRC cells, agonists and antagonists of both cannabinoid receptors, CB1 and CB2, showed anti-tumor action through induction of cell death with different mechanisms ranging from apoptosis to mitotic catastrophe”