Is the Cannabinoid CB2 Receptor a Major Regulator of the Neuroinflammatory Axis of the Neurovascular Unit in Humans?

Elsevier

“The central nervous system (CNS) is an immune privileged site where the neurovascular unit (NVU) and the blood-brain barrier (BBB) act as a selectively permeable interface to control the passage of nutrients and inflammatory cells into the brain parenchyma. However, in response to injury, infection, or disease, CNS cells become activated, and release inflammatory mediators to recruit immune cells to the site of inflammation.

Increasing evidence suggests that cannabinoids may have a neuroprotective role in CNS inflammatory conditions.

For many years, it was widely accepted that cannabinoid receptor type 1 (CB1) modulates neurological function centrally, while peripheral cannabinoid receptor type 2 (CB2) modulates immune function.

As knowledge about the physiology and pharmacology of the endocannabinoid system advances, there is increasing interest in targeting CB2 as a potential treatment for inflammation-dependent CNS diseases (Ashton & Glass, 2007), where recent rodent and human studies have implicated intervention at the level of the NVU and BBB.

These are incredibly important in brain health and disease. Therefore, this review begins by explaining the cellular and molecular components of these systems, highlighting important molecules potentially regulated by cannabinoid ligands and then takes an unbiased look at the evidence in support (or otherwise) of cannabinoid receptor expression and control of the NVU and BBB function in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/28826541

http://www.sciencedirect.com/science/article/pii/S1054358917300376?via%3Dihub

The Role of Nuclear Hormone Receptors in Cannabinoid Function.

Elsevier

“Since the early 2000s, evidence has been accumulating that most cannabinoid compounds interact with the nuclear hormone family peroxisome proliferator-activated receptors (PPARs). This can be through direct binding of these compounds to PPARs, metabolism of cannabinoid to other PPAR-activating chemicals, or indirect activation of PPAR through cell signaling pathways. Delivery of cannabinoids to the nucleus may be facilitated by fatty acid-binding proteins and carrier proteins. All PPAR isoforms appear to be activated by cannabinoids, but the majority of evidence is for PPARα and γ. To date, little is known about the potential interaction of cannabinoids with other nuclear hormones. At least some (but not all) of the well-known biological actions of cannabinoids including neuroprotection, antiinflammatory action, and analgesic effects are partly mediated by PPAR-activation, often in combination with activation of the more traditional target sites of action. This has been best investigated for the endocannabinoid-like compounds palmitoylethanolamide and oleoylethanolamine acting at PPARα, and for phytocannabinoids or their derivatives activation acting at PPARγ. However, there are still many aspects of cannabinoid activation of PPAR and the role it plays in the biological and therapeutic effects of cannabinoids that remain to be investigated.”

https://www.ncbi.nlm.nih.gov/pubmed/28826538

http://www.sciencedirect.com/science/article/pii/S1054358917300364?via%3Dihub

Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors.

Elsevier

“Of the druggable group of G protein-coupled receptors in the human genome, a number remain which have yet to be paired with an endogenous ligand-orphan GPCRs. Among these 100 or so entities, 3 have been linked to the cannabinoid system. GPR18, GPR55, and GPR119 exhibit limited sequence homology with the established CB1 and CB2 cannabinoid receptors. However, the pharmacology of these orphan receptors displays overlap with CB1 and CB2 receptors, particularly for GPR18 and GPR55. The linking of GPR119 to the cannabinoid receptors is less convincing and emanates from structural similarities of endogenous ligands active at these GPCRs, but which do not cross-react. This review describes the evidence for describing these orphan GPCRs as cannabinoid receptor-like receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/28826536

http://www.sciencedirect.com/science/article/pii/S1054358917300418?via%3Dihub

Actions and Regulation of Ionotropic Cannabinoid Receptors.

“Almost three decades have passed since the identification of the two specific metabotropic receptors mediating cannabinoid pharmacology. Thereafter, many cannabinoid effects, both at central and peripheral levels, have been well documented and characterized. However, numerous evidences demonstrated that these pharmacological actions could not be attributable solely to the activation of CB1 and CB2 receptors since several important cannabimimetic actions have been found in biological systems lacking CB1 or CB2 gene such as in specific cell lines or transgenic mice. It is now well accepted that, beyond their receptor-mediated effects, these molecules can act also via CB1/CB2-receptor-independent mechanism. Cannabinoids have been demonstrated to modulate several voltage-gated channels (including Ca2+, Na+, and various type of K+ channels), ligand-gated ion channels (i.e., GABA, glycine), and ion-transporting membranes proteins such as transient potential receptor class (TRP) channels. The first direct, cannabinoid receptor-independent interaction was reported on the function of serotonin 5-HT3 receptor-ion channel complex. Similar effects were reported also on the other above mentioned ion channels. In the early ninety, studies searching for endogenous modulators of L-type Ca2+ channels identified anandamide as ligand for L-type Ca2+ channel. Later investigations indicated that other types of Ca2+ currents are also affected by endocannabinoids, and, in the late ninety, it was discovered that endocannabinoids activate the vanilloid receptor subtype 1 (TRPV1), and nowadays, it is known that (endo)cannabinoids gate at least five distinct TRP channels. This chapter focuses on cannabinoid regulation of ion channels and lays special emphasis on their action at transient receptor channels.”

https://www.ncbi.nlm.nih.gov/pubmed/28826537

Functional Selectivity at Cannabinoid Receptors.

Advances in Pharmacology

“It is now clear that, in contrast to traditional descriptions of G protein-coupled receptor signaling, agonists can activate or inhibit characteristic patterns of downstream effector pathways depending on their structures and the conformational changes induced in the receptor. This is referred to as functional selectivity (also known as agonist-directed trafficking, ligand-induced differential signaling, or biased agonism). It is important because even small structural differences can result in significant variations in overall agonist effects (wanted and unwanted) depending on which postreceptor signaling systems are engaged by each agonist/receptor pairing. In addition to the canonical signaling pathways mediated by Gi/o proteins, CB1 and CB2 receptor agonists can have effects via differential activation not only of Gi subtypes but also of Gs and Gq/11 proteins. For example, the classical cannabinoid HU-210 produces maximal activation of both Gi and Go proteins, while the endocannabinoid anandamide and aminoalkylindole WIN 55,212 both produce maximal activation of Gi, but submaximal activation of Go. Cannabinoid agonists can also signal differentially via β-arrestins coupled to mitogen-activated protein kinases, subsequently promoting varying degrees of receptor internalization and agonist desensitization. A recent extensive characterization of the molecular pharmacology of CB2 agonists (Soethoudt et al., 2017) identified marked differences (bias) in the ability of certain agonists to activate distinct signaling pathways (cAMP accumulation, ERK phosphorylation, GIRK activation, GTPγS binding, and β-arrestin recruitment) and to cause off-target effects, exemplifying the need to evaluate functional selectivity in agonist drug development.”

https://www.ncbi.nlm.nih.gov/pubmed/28826535

http://www.sciencedirect.com/science/article/pii/S1054358917300285?via%3Dihub

The effects of cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala and hippocampus on the consolidation of a traumatic event.

Cover image

“Ample evidence demonstrates that fear learning contributes significantly to many anxiety pathologies including post-traumatic stress disorder (PTSD). The endocannabinoid (eCB) system may offer therapeutic benefits for PTSD and it is a modulator of the hypothalamic pituitary adrenal (HPA) axis.

Here we compared the separated and combined effects of blocking glucocorticoid receptors (GRs) using the GR antagonist RU486 and enhancing CB1r signaling using the CB1/2 receptor agonist WIN55,212-2 in the CA1 and basolateral amygdala (BLA) on the consolidation of traumatic memory. Traumatic memory was formed by exposure to a severe footshock in an inhibitory avoidance apparatus followed by exposure to trauma reminders. Intra-BLA RU486 (10 ng/side) and WIN55,212-2 (5 μg/side) administered immediately after shock exposure dampened the consolidation of the memory about the traumatic event and attenuated the increase in acoustic startle response in rats exposed to shock and reminders. In the CA1, WIN55,212-2 impaired consolidation and attenuated the increase in acoustic startle response whereas RU486 had no effect. The effects of WIN55,212-2 were found to be mediated by CB1 receptors, but not by GRs. Moreover, post-shock systemic WIN55,212-2 (0.5 mg/kg) administration prevented the increase in GRs and CB1 receptor levels in the CA1 and BLA in rats exposed to shock and reminders.

The findings suggest that the BLA is a locus of action of cannabinoids and glucocorticoids in modulating consolidation of traumatic memory in a rat model of PTSD. Also, the findings highlight novel targets for the treatment of emotional disorders and PTSD in particular.”

https://www.ncbi.nlm.nih.gov/pubmed/28818702

http://www.sciencedirect.com/science/article/pii/S1074742717301284

Topical Medical Cannabis (TMC): A new treatment for wound pain-Three cases of Pyoderma Gangrenosum.

Cover image volume 54, Issue 2

“Pain associated with integumentary wounds is highly prevalent yet it remains an area of significant unmet need within healthcare. Currently, systemically administered opioids are the mainstay of treatment. However, recent publications are casting opioids in a negative light given their high side effect profile, inhibition of wound healing, and association with accidental overdose, incidents that are frequently fatal. Thus, novel analgesic strategies for wound-related pain need to be investigated.

The ideal methods of pain relief for wound patients are modalities that are topical, lack systemic side effects, non-invasive, self-administered, and display rapid onset of analgesia.

Extracts derived from the cannabis plant have been applied to wounds for thousands of years. The discovery of the human endocannabinoid system and its dominant presence throughout the integumentary system provides a valid and logical scientific platform to consider the use of topical cannabinoids for wounds.

We are reporting a prospective case series of 3 patients with Pyoderma Gangrenosum (PG) that were treated with Topical Medical Cannabis (TMC) compounded in non-genetically modified organic sunflower oil.

Clinically significant analgesia that was associated with reduced opioid utilization was noted in all 3 cases. TMC has the potential to improve pain management in patients suffering from wounds of all classes.”

https://www.ncbi.nlm.nih.gov/pubmed/28818631

http://www.jpsmjournal.com/article/S0885-3924(17)30351-2/fulltext

How Does Marijuana Effect Outcomes After Trauma in ICU Patients? A Propensity Matched Analysis

logo

“Unlike several studies that focus on the effects of marijuana on the outcomes of diseases, our aim was to assess the relationship between a positive toxicology screen for marijuana and mortality in such patients.

A positive marijuana screen is associated with decreased mortality in adult trauma patients admitted to the ICU.

This association warrants further investigation of the possible physiological effects of marijuana in trauma patients.”

https://insights.ovid.com/pubmed?pmid=28787375

Smoking Marijuana Can Reduce Risk Of Stroke, Study Finds.

Image result for university texas dallas
“Smoking marijuana can reduce the risk of a stroke to a large extent, a new study has found. In the states where marijuana use is legal, strains of the drug are prescribed to cure chronic pain, anxiety, and epilepsy. A new study conducted by the University of Texas at Dallas has found cannabis can improve a person’s health by enhancing the blood and oxygen flow, thus reducing the risk of blood clots and the possibility of a stroke.” http://www.ibtimes.com/smoking-marijuana-can-reduce-risk-stroke-study-finds-2579489
“Residual Effects of THC via Novel Measures of Brain Perfusion and Metabolism in a Large Group of Chronic Cannabis Users” https://www.nature.com/npp/journal/vaop/ncurrent/full/npp201744a.html
“Could cannabis PROTECT you from a stroke? People who smoke marijuana every day have better blood flow and oxygen to the brain, controversial study claims. A study by the University of Texas at Dallas has found the drug can improve oxygen and blood flow to the brain, reducing the risk of clots that cause a brain attack. In fact, the research team found chronic cannabis users have the most efficient brain blood flow of all, suggesting their stroke risk is lowest.” http://www.dailymail.co.uk/health/article-4797444/Cannabis-PROTECTS-stroke-study-claims.html

GPR55 – a putative “type 3” cannabinoid receptor in inflammation.

“G protein-coupled receptor 55 (GPR55) shares numerous cannabinoid ligands with CB1 and CB2 receptors despite low homology with those classical cannabinoid receptors. The pharmacology of GPR55 is not yet fully elucidated; however, GPR55 utilizes a different signaling system and downstream cascade associated with the receptor. Therefore, GPR55 has emerged as a putative “type 3” cannabinoid receptor, establishing a novel class of cannabinoid receptor. Furthermore, the recent evidence of GPR55-CB1 and GPR55-CB2 heteromerization along with its broad distribution from central nervous system to peripheries suggests the importance of GPR55 in various cellular processes and pathologies and as a potential therapeutic target in inflammation.”