Potential of plant-sourced phenols for inflammatory bowel disease.

“Inflammatory bowel disease (IBD) is an uncontrolled chronic inflammatory intestinal disorder, which requires medications for long-term therapy. Facing the challenges of severe side effects and drug resistance of conventional medications, to develop the strategies meet the stringent safety and effectiveness in the long-term treatment are urgent in the clinics.

In this regard, a growing body of evidence confirms plant-sourced phenols, such as flavonoids, catechins, stilbenes, coumarins, quinones, lignans, phenylethanoids, cannabinoid phenols, tannins, phenolic acids and hydroxyphenols, exert potent protective benefits with fewer undesirable effects in conditions of acute or chronic intestinal inflammation through improvement of colonic oxidative and pro-inflammatory status, preservation of the epithelial barrier function and modulation of gut microbiota.

In this review, the great potential of plant-sourced phenols and their action mechanisms for the treatment or prevention of IBD in recent research are summarized, which may help the further development of new preventive/adjuvant regimens for IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/28990509

http://www.eurekaselect.com/156267/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol: an alternative therapeutic agent for oral mucositis?

Image result for Journal of Clinical Pharmacy and Therapeutics

“Chemo- and radiotherapy are therapeutic modalities often used in patients with malignant neoplasms. They kill tumour cells but act on healthy tissues as well, resulting in adverse effects. Oral mucositis is especially of concern, due to the morbidity that it causes.

We reviewed the literature on the etiopathogenesis of oral mucositis and the activity of cannabidiol, to consider the possibility of its use for the prevention and treatment of oral mucositis.

The control of oxidative stress may prevent and alleviate oral mucositis. Studies have demonstrated that cannabidiol is safe to use and possesses antioxidant, anti-inflammatory and analgesic properties.

The literature on the use of cannabidiol in dentistry is still scarce. Studies investigating the use of cannabidiol in oral mucositis and other oxidative stress-mediated side effects of chemotherapy and radiotherapy on the oral mucosa should be encouraged.”

https://www.ncbi.nlm.nih.gov/pubmed/28191662

“Review: cannabidiol may be beneficial for oral mucositis. The researchers found evidence that oxidative stress control could prevent and relieve oral mucositis. Cannabidiol was found to be safe to use and demonstrated antioxidant, anti-inflammatory, and analgesic properties,” https://medicalxpress.com/news/2017-02-cannabidiol-beneficial-oral-mucositis.html
“Cannabidiol could be beneficial for the treatment of oral mucositis, according to a review published online Feb. 12 in the Journal of Clinical Pharmacy and Therapeutics.” http://www.bioportfolio.com/news/article/3029295/Review-cannabidiol-may-be-beneficial-for-oral-mucositis.html
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids and post-traumatic stress disorder: clinical and preclinical evidence for treatment and prevention.

“There is substantial evidence from studies in humans and animal models for a role of the endocannabinoid system in the control of emotional states. Several studies have shown an association between exposure to trauma and substance use. Specifically, it has been shown that there is increased prevalence of cannabis use in post-traumatic stress disorder (PTSD) patients and vice versa.

Clinical studies suggest that PTSD patients may cope with their symptoms by using cannabis. This treatment-seeking strategy may explain the high prevalence of cannabis use among individuals with PTSD.

Preliminary studies in humans also suggest that treatment with cannabinoids may decrease PTSD symptoms including sleep quality, frequency of nightmares, and hyperarousal.

Studies in animal models have shown that cannabinoids can prevent the effects of stress on emotional function and memory processes, facilitate fear extinction, and have an anti-anxiety-like effect in a variety of tasks.

Moreover, cannabinoids administered shortly after exposure to a traumatic event were found to prevent the development of PTSD-like phenotype.

In this article, we review the existing literature on the use of cannabinoids for treating and preventing PTSD in humans and animal models.

There is a need for large-scale clinical trials examining the potential decrease in PTSD symptomatology with the use of cannabis.

In animal models, there is a need for a better understanding of the mechanism of action and efficacy of cannabis. Nevertheless, the end result of the current clinical and preclinical data is that cannabinoid agents may offer therapeutic benefits for PTSD.”

http://www.ncbi.nlm.nih.gov/pubmed/27551883

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy

Logo of nihpa

“CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans.

In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose.

 A previous study has demonstrated cardiac protection by CBD in myocardial ischemic reperfusion injury; therefore, we have investigated the potential protective effects of CBD in diabetic hearts and in primary human cardiomyocytes exposed to high glucose.
Our findings underscore the potential of CBD for the prevention/treatment of diabetic complications.
Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Natural Phytochemicals in the Treatment and Prevention of Dementia: An Overview.

“The word dementia describes a class of heterogeneous diseases which etiopathogenetic mechanisms are not well understood. There are different types of dementia, among which, Alzheimer’s disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD) are the more common.

Currently approved pharmacological treatments for most forms of dementia seem to act only on symptoms without having profound disease-modifying effects. Thus, alternative strategies capable of preventing the progressive loss of specific neuronal populations are urgently required.

In particular, the attention of researchers has been focused on phytochemical compounds that have shown antioxidative, anti-amyloidogenic, anti-inflammatory and anti-apoptotic properties and that could represent important resources in the discovery of drug candidates against dementia.

In this review, we summarize the neuroprotective effects of the main phytochemicals belonging to the polyphenol, isothiocyanate, alkaloid and cannabinoid families in the prevention and treatment of the most common kinds of dementia.

We believe that natural phytochemicals may represent a promising sources of alternative medicine, at least in association with therapies approved to date for dementia.”

http://www.ncbi.nlm.nih.gov/pubmed/27110749

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol promotes browning in 3T3-L1 adipocytes.

“Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity.

The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes.

These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis.

In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism.

Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/27067870

http://www.thctotalhealthcare.com/category/obesity-2/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Characterization of Lignanamides from Hemp (Cannabis sativa L. ) Seed and their Antioxidant and Acetylcholinesterase Inhibitory Activities.

Image result for J Agric Food Chem.

“Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value.

Here we studied the secondary metabolites of hempseed aiming at identifying bioactive compounds that could contribute to its health benefits.

This investigation led to the isolation of four new lignanamides cannabisin M, 2, cannabisin N, 5, cannabisin O, 8 and 3,3′-demethyl-heliotropamide, 10, together with ten known lignanamides, among which 4 was identified for the first time from hempseed.

Structures were established on the basis of NMR, HR-MS, UV, IR as well as by comparison with the literature data.

Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro.

The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.”  http://www.ncbi.nlm.nih.gov/pubmed/26585089

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

 “The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Fatty acids, endocannabinoids and inflammation.

“From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system.

However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems.

Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides.

With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation.

A key feature of this ‘expanded’ endocannabinoid system, or ‘endocannabinoidome’, is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities.

Following an update on the role of the ‘endocannabinoidome’ in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners.

Although its pleiotropic character poses scientific challenges, the ‘expanded’ endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases.

In this respect, successes are more likely to come from ‘multiple-target’ than from ‘single-target’ strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/26325095

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid cell surface receptor plays a tumor-suppressing role in human colorectal cancer

“New preclinical research shows that cannabinoid cell surface receptor CB1 plays a tumor-suppressing role in human colorectal cancer, scientists report in the Aug. 1 edition of the journal Cancer Research.

CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“We’ve found that CB1 expression is lost in most colorectal cancers, and when that happens a cancer-promoting protein is free to inhibit cell death,” said senior author Raymond DuBois, M.D., Ph.D., provost and executive vice president of The University of Texas M. D. Anderson Cancer Center.

DuBois and collaborators from Vanderbilt-Ingram Cancer Center also show that CB1 expression can be restored with an existing drug, decitabine. They found that mice prone to developing intestinal tumors that also have functioning CB1 receptors develop fewer and smaller tumors when treated with a drug that mimics a cannabinoid receptor ligand. Ligands are molecules that function by binding to specific receptors. Agonists are synthetic molecules that mimic the action of a natural molecule.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

More: http://www.news-medical.net/news/2008/08/03/40485.aspx

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Turned-Off Cannabinoid Receptor Turns on Colorectal Tumor Growth – MDAnderson

“Researchers find CB1 suppresses tumors, a new potential path for treatment, prevention.”

 “New preclinical research shows that cannabinoid cell surface receptor CB1 plays a tumor-suppressing role in human colorectal cancer, scientists report in the Aug. 1 edition of the journal Cancer Research.

CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said.

 “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

More:  http://www.mdanderson.org/newsroom/news-releases/2008/turned-off-cannabinoid-receptor-turns-on-colorectal-tumor-growth.html

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous