Review of cannabinoids and their antiemetic effectiveness.

Abstract

“Marijuana has been used for over 2 centuries. Its major psychoactive constituent, delta-9-tetrahydrocannabinol (THC) was isolated in 1964 and first used to control nausea and vomiting during chemotherapy in the 1970s. THC has cardiovascular, pulmonary and endocrinological effects as well as actions on the central nervous system. Alterations in mood, memory, motor coordination, cognitive ability, sensorium, spatial- and self-perception are commonly experienced. The precise antiemetic mechanism is unknown. THC and nabilone act at a number of sites within the central nervous system. Cannabinoids have also been shown to inhibit prostaglandin synthesis in vitro. In controlled clinical trials, THC is superior to placebo and prochlorperazine in antiemetic effectiveness. Effectiveness of THC correlates to a ‘high’ experienced by the patient. A variety of chemotherapy regimens respond to THC including high-dose methotrexate and the doxorubicin, cyclophosphamide, fluorouracil combination. Cisplatin is more resistant. Side effects are generally well tolerated but may limit THC use in the elderly or when high doses are administered. Nabilone, a synthetic cannabinoid, is also an effective antiemetic which is more active than prochlorperazine in preventing chemotherapy-induced emesis, including cisplatin-containing regimens. Side effects are similar to THC and may be dose-limiting. Levonantradol, another synthetic cannabinoid, is an effective antiemetic. It may provide more flexibility in the outpatient setting since it can be administered orally or intramuscularly. Most side effects are mild except for dysphoria which may be dose-limiting.”

http://www.ncbi.nlm.nih.gov/pubmed/6301800

Regulation of nausea and vomiting by cannabinoids.

“Anti-emetic effects of cannabinoids in human clinical trials”

  “Considerable evidence demonstrates that manipulation of the endocannabinoid system regulates nausea and vomiting in humans and other animals. The anti-emetic effect of cannabinoids has been shown across a wide variety of animals that are capable of vomiting in response to a toxic challenge. CB1 agonism suppresses vomiting, which is reversed by CB1 antagonism, and CB1 inverse agonism promotes vomiting. Recently, evidence from animal experiments suggests that cannabinoids may be especially useful in treating the more difficult to control symptoms of nausea and anticipatory nausea in chemotherapy patients, which are less well controlled by the currently available conventional pharmaceutical agents. Although rats and mice are incapable of vomiting, they display a distinctive conditioned gaping response when re-exposed to cues (flavours or contexts) paired with a nauseating treatment. Cannabinoid agonists (Δ9-THC, HU-210) and the fatty acid amide hydrolase (FAAH) inhibitor, URB-597, suppress conditioned gaping reactions (nausea) in rats as they suppress vomiting in emetic species. Inverse agonists, but not neutral antagonists, of the CB1 receptor promote nausea, and at subthreshold doses potentiate nausea produced by other toxins (LiCl). The primary non-psychoactive compound in cannabis, cannabidiol (CBD), also suppresses nausea and vomiting within a limited dose range. The anti-nausea/anti-emetic effects of CBD may be mediated by indirect activation of somatodendritic 5-HT1A receptors in the dorsal raphe nucleus; activation of these autoreceptors reduces the release of 5-HT in terminal forebrain regions. Preclinical research indicates that cannabinioids, including CBD, may be effective clinically for treating both nausea and vomiting produced by chemotherapy or other therapeutic treatments.”

“The cannabis plant has been used for several centuries for a number of therapeutic applications, including the attenuation of nausea and vomiting. Ineffective treatment of chemotherapy-induced nausea and vomiting prompted oncologists to investigate the anti-emetic properties of cannabinoids in the late 1970s and early 1980s, before the discovery of the 5-HT3 antagonists. The first cannabinoid agonist, nabilone (Cesamet), which is a synthetic analogue of Δ9-THC was specifically licensed for the suppression of nausea and vomiting produced by chemotherapy. Furthermore, synthetic Δ9-THC, dronabinol, entered the clinic as Marinol in 1985 as an anti-emetic and in 1992 as an appetite stimulant. In these early studies, several clinical trials compared the effectiveness of Δ9-THC with placebo or other anti-emetic drugs. Comparisons of oral Δ9-THC with existing anti-emetic agents generally indicated that Δ9-THC was at least as effective as the dopamine antagonists, such as prochlorperazine.”

“There is some evidence that cannabis-based medicines may be effective in treating the more difficult to control symptoms of nausea and delayed nausea and vomiting in children. Abrahamov et al. (1995) evaluated the anti-emetic effectiveness of Δ8-THC, a close but less psychoactive relative of Δ9-THC, in children receiving chemotherapy treatment. Two hours before the start of each cancer treatment and every six hours thereafter for 24 h, the children were given Δ8-THC as oil drops on the tongue or in a bite of food. After a total of 480 treatments, the only side effects reported were slight irritability in two of the youngest children (3.5 and 4 years old); both acute and delayed nausea and vomiting were controlled.”

“Chemotherapy-induced vomiting is well controlled in most patients by conventionally available drugs, nausea (acute, delayed and anticipatory) continues to be a challenge. Nausea is often reported as more distressing than vomiting, because it is a continuous sensation. Indeed, this distressing symptom of chemotherapy treatment (even when vomiting is pharmacologically controlled) can become so severe that as many as 20% of patients discontinue the treatment. Both preclinical and human clinical research suggests that cannabinoid compounds may have promise in treating nausea in chemotherapy patients.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165951/

Mechanism of action of cannabinoids: how it may lead to treatment of cachexia, emesis, and pain.

Image result for The Journal of Supportive Oncology

“Many patients with life-threatening diseases such as cancer experience severe symptoms that compromise their health status and deny them quality of life. Patients with cancer often experience cachexia, pain, and depression,which translate into an unacceptable quality of life. The discovery of the endocannabinoid system has led to a renewed interest in the use of cannabinoids for the management of nausea, vomiting, and weight loss arising either from cancer or the agents used to treat cancer. The endocannabinoid system has been found to be a key modulator of systems involved in pain perception, emesis, and reward pathways. As such, it represents a target for development of new medications for controlling the symptoms associated with cancer. Although the cannabinoid receptor agonist tetrahydrocannabinol and one of its analogs are currently the only agents approved for clinical use, efforts are under way to devise other strategies for activating the endocannabinoid system for therapeutic uses.”

http://www.ncbi.nlm.nih.gov/pubmed/15357514

Compound in cannabis may help treat epilepsy, researchers say

“British researchers have determined that a little-studied chemical in the cannabis plant could lead to effective treatments for epilepsy, with few to no side effects.

The team at Britain’s University of Reading, working with GW Pharmaceuticals and Otsuka Pharmaceuticals, tested cannabidivarin, or CBDV, in rats and mice afflicted with six types of epilepsy and found it “strongly suppressed seizures” without causing the uncontrollable shaking and other side effects of existing anti-epilepsy drugs.

The casual use of marijuana — or cannabis — to control seizures dates back to ancient times. Its most prominent component, THC, is among those shown in animal studies to have strong anti-convulsant properties…”

http://articles.latimes.com/2012/sep/14/news/la-sn-cannabis-cbdv-epilepsy-20120914

Effects of marihuana cannabinoids on seizure activity in cobalt-epileptic rats.

Abstract

“Rats rendered chronically epileptic by bilateral implantation of cobalt into frontal cortices were simultaneously prepared with permanent electrodes for longitudinal recording of the electroencephalogram (EEG) and electromyogram (EMG). Delta-8-tetrahydrocannabinol (delta-8-THC; 10 mg/kg), delta-9-tetrahydrocannabinol (delta-9-THC; 10 mg/kg), cannabidiol (CBD; 60 mg/kg), or polyvinylpyrrolidone (PVP) vehicle (2 ml/kg) was administered IP twice daily from day 7 through 10 after cobalt implantation, at which time generalized seizure activity in non-treated cobalt-epileptic rats was maximal. Relative to PVP-treated controls, CBD did not alter the frequency of appearance of seizures during the course of repeated administration. In contrast, both delta-8-THC and delta-9-THC markedly reduced the incidence of seizures on the first and second days of administration. Interictal spiking during this period, on the other hand, was actually enhanced. On the third and fourth days, tolerance to the effect on seizures was evident, with a return of seizure frequency of THC-treated rats to values not significantly different from those of controls. Unlike the effect on seizures, no tolerance developed to the marked suppression of rapid eye movement (REM) sleep induces by delta-8-THC and delta-9-THC. REM sleep remained reduced in the treated animals during the first 2 days after termination of THC administration. In contrast, REM sleep time was unaffected by repeated administration of CBD. These results suggest that delta-8-THC and delta-9-THC exert their initial anticonvulsant effect by limiting the spread of epileptogenic activity originating from the cobalt focus.”

http://www.ncbi.nlm.nih.gov/pubmed/6280204

The influence of cannabidiol and delta 9-tetrahydrocannabinol on cobalt epilepsy in rats.

Abstract

“The mechanisms of the anticonvulsant activity of cannabidiol (CBD) and the central excitation of delta 9-tetrahydrocannabinol (delta 9-THC) were investigated electrophysiologically with conscious, unrestrained cobalt epileptic rats. The well-known antiepileptics, trimethadione (TMO), ethosuximide (ESM), and phenytoin (PHT), were included as reference drugs. Direct measurements were made of spontaneously firing, epileptic potentials from a primary focus on the parietal cortex and convulsions were monitored visually. ESM and TMO decreased the frequency of focal potentials, but PHT and CBD exerted no such effect. Although CBD did not suppress the focal abnormality, it did abolish jaw and limb clonus; in contrast, delta 9-THC markedly increased the frequency of focal potentials, evoked generalized bursts of polyspikes, and produced frank convlusions. 11-OH-delta 9-THC, the major metabolite of delta 9-THC, displayed only one of the excitatory properties of the parent compound: production of bursts of polyspikes. In contrast to delta 9-THC and its 11-OH metabolite, CBD, even in very high doses, did not induce any excitatory effects or convulsions. The present study provides the first evidence that CBD exerts anticonvulsant activity against the motor manifestations of a focal epilepsy, and that the mechanism of the effect may involve a depression of seizure generation or spread in the CNS.”

http://www.ncbi.nlm.nih.gov/pubmed/113206

An electrophysiological analysis of the anticonvulsant action of cannabidiol on limbic seizures in conscious rats.

Abstract

“The effects of cannabidiol (CBD) on electrically evoked kindled seizures were studied in conscious, unrestrained rats with chronically implanted cortical and limbic electrodes, and the results were compared with those of delta 9-tetrahydrocannabinol (delta 9-THC), phenytoin (PHT), and ethosuximide (ESM). All drugs were anticonvulsant, but there were marked differences in their effects on afterdischarge (AD) threshold, duration, and amplitude. CBD, like PHT and delta 9-THC, elevated the AD threshold; in contrast, ESM decreased the threshold but suppressed AD spread. CBD, however, also resembled ESM inasmuch as both drugs decreased AD duration and amplitude. Electrophysiologically, the antiseizure effects of CBD were a combination of those of PHT and ESM. The combination of effects may account for the observation that CBD was the most efficacious of the drugs tested against limbic ADs and convulsions. Other properties of CBD were also noted: For example, compared with delta 9-THC, it is a much more selective anticonvulsant vis-à-vis motor toxicity. CBD also lacks the CNS excitatory effects produced by delta 9-THC, PHT, and ESM. These characteristics, combined with its apparently unique set of electrophysiological properties, support the suggestion that CBD has therapeutic potential as an antiepileptic.”

http://www.ncbi.nlm.nih.gov/pubmed/477630

Epileptiform seizures in domestic fowl. V. The anticonvulsant activity of delta9-tetrahydrocannabinol.

Abstract

“The anticonvulsant activity of delta9-tetrahydrocannabinol (delta9-THC) has been determined against seizures induced in epileptic chickens by intermittent photic stimulation (IPS) and in epileptic and nonepileptic chickens by Metrazol. Intravenous administration of the drug reduced both the severity and incidence of seizures evoked by IPS in epileptic chickens. This anticonvulsant action was accompanied by a reduction in frequency of inter-ictal slow-wave high-voltage electroencephalographic activity and by the absence of spiking during IPS. delta9-THC did not affect the incidence of Metrazol-induced seizures in epileptic or nonepileptic chickens.”

http://www.ncbi.nlm.nih.gov/pubmed/1222370

Anticonvulsant activity of delta9-tetrahydrocannabinol compared with three other drugs.

Abstract

“Delta9-tetrahydrocannabinol (THC) was compared with diphenylhydantoin (DPH), phenobarbital (PB) and chlordiazepoxide (CDP) using several standard laboratory procedures to determine anticonvulsant activity in mice, i.e., the maximal electroshock test (MES), and seizures induced by pentylenetetrazol, strychnine and nicotine. In the MES test, THC was the least potent and DPH the most potent blocker of hind limb tonic extensor convulsions whereas THC was the most potent and DPH the least potent in increasing the latency to this response and in preventing mortality. Seizures and mortality induced by pentylenetetrazol or by strychnine were enhanced by THC and DPH and were blocked by PB and CDP. In the test with nicotine, none of the four anticonvulsant agents prevented seizures; DPH was the only one which failed to increase latency; THC and DPH were less potent than PB and CDP in preventing mortality. THC most closely resembled DPH in the tests with chemical convulsant agents, but a sedative action of THC, resembling that of PB and CDP, was indicated by low ED5 0 for increased latency and for prevention of mortality in the MES test.”

http://www.ncbi.nlm.nih.gov/pubmed/1253828

On the application of cannabis in paediatrics and epileptology.

Abstract

“An initial report on the therapeutic application of delta 9-THC (THC) (Dronabinol, Marinol) in 8 children resp. adolescents suffering from the following conditions, is given: neurodegenerative disease, mitochondriopathy, posthypoxic state, epilepsy, posttraumatic reaction. THC effected reduced spasticity, improved dystonia, increased initiative (with low dose), increased interest in the surroundings, and anticonvulsive action. The doses ranged from 0.04 to 0.12 mg/kg body weight a day. The medication was given as an oily solution orally in 7 patients, via percutaneous gastroenterostomy tube in one patient. At higher doses disinhibition and increased restlessness were observed. In several cases treatment was discontinued and in none of them discontinuing resulted in any problems. The possibility that THC-induced effects on ion channels and transmitters may explain its therapeutic activity seen in epileptic patients is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/15159680