Cannabidiol, a non-psychoactive component of cannabis and its synthetic dimethylheptyl homolog suppress nausea in an experimental model with rats.

“Rats display conditioned rejection reactions during an oral infusion of a flavor previously paired with an emetic drug; considerable evidence indicates that these rejection reactions reflect nausea.

Here we report that cannabidiol, a major non-psychoactive cannabinoid found in marijuana and its synthetic dimethylheptyl homolog interfere with nausea elicited by lithium chloride and with conditioned nausea elicited by a flavor paired with lithium chloride.

These results suggest that cannabinoids without psychoactive side-effects may have therapeutic value in the treatment of chemotherapy-induced nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/11973447

http://www.thctotalhealthcare.com/category/nauseavomiting/

The endocannabinoid system as a target for the treatment of neurodegenerative disease.

Logo of brjpharm

“The Cannabis sativa plant has been exploited for medicinal, agricultural and spiritual purposes in diverse cultures over thousands of years.

Cannabis has been used recreationally for its psychotropic properties, while effects such as stimulation of appetite, analgesia and anti-emesis have lead to the medicinal application of cannabis.

Indeed, reports of medicinal efficacy of cannabis can been traced back as far as 2700 BC, and even at that time reports also suggested a neuroprotective effect of the cultivar.

…alterations in the endocannabinoid system have been extensively investigated in a range of neurodegenerative disorders.

In this review we examine the evidence implicating the endocannabinoid system in the cause, symptomatology or treatment of neurodegenerative disease. We examine data from human patients and compare and contrast this with evidence from animal models of these diseases. On the basis of this evidence we discuss the likely efficacy of endocannabinoid-based therapies in each disease context.

There has been anecdotal and preliminary scientific evidence of cannabis affording symptomatic relief in diverse neurodegenerative disorders. These include multiple sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases, and amyotrophic lateral sclerosis.

This evidence implied that hypofunction or dysregulation of the endocannabinoid system may be responsible for some of the symptomatology of these diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931550/

Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.

“Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa.

It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties.

However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors.

For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.

The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18844286

The complex modulation of lysosomal degradation pathways by cannabinoid receptor 1 and 2.

“The two main receptors of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and 2 (CB2R) were described in the early 1990s. Since then, different physiological functions have been revealed that are linked to the activity of these two G-protein-coupled receptors.

CB1R and CB2R activity influences signal Cascades, which are known to play a role in the regulation of the cellular “self-digestion” process called autophagy. A variety of these signaling pathways are integrated by the mammalian target of rapamycin complex 1 (mTORC1) that acts as an inhibitor of autophagy. Others, like AMP-activated protein kinase dependent signaling pathway, are able to bypass mTORC1 to modulate the autophagic activity directly.

In the recent years, several scientific reports demonstrate an involvement of CB1R and CB2R signaling in the control of the autophagic activity in different paradigms.

In this review, we summarize the recent literature on this topic, which is in part contradictory and therefore, it is of great importance to illuminate the results of the single reports in the physiological context of the model systems used in these studies.

Utilizing CB1R and CB2R as pharmacological targets to modulate the autophagic activity is a promising treatment strategy for the treatment of different patho-physiological conditions and disease.”

http://www.ncbi.nlm.nih.gov/pubmed/25908257

Medicinal Marijuana May Help Cure Children With Severe Epilepsy

A marijuana plant

“Recent research found that a liquid form of therapeutic marijuana can provide cure to children with treatment-resistant epilepsy.

The said study will be presented at the American Academy of Neurology’s 67th Annual Meeting in Washington, DC in late April.”

http://au.ibtimes.com/medicinal-marijuana-may-help-cure-children-severe-epilepsy-1440398

http://www.thctotalhealthcare.com/category/epilepsy-2/

Differential Pharmacological Regulation of Sensorimotor-Gating Deficit in CB1 Knockout Mice and Associated Neurochemical and Histological Alterations.

“The endocannabinoid system has been widely involved in the pathophysiology of sensorimotor gating deficits. The present study is aimed to evaluate the pharmacological modulation of the sensorimotor gating impairment induced by cannabinoid CB1 receptor (CB1r) deletion…

These data further support the important role of CB1r in sensorimotor gating regulation and the therapeutic usefulness of methylphenidate for the treatment of psychiatric disorders with associated pre-attentional deficits.”

http://www.ncbi.nlm.nih.gov/pubmed/25895455

Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy.

“Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/25891509

http://www.thctotalhealthcare.com/category/epilepsy-2/

Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection.

“Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure.

Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD.

The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems.

As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD.

Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons.

Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD.

Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.”

http://www.ncbi.nlm.nih.gov/pubmed/25888232

“To conclude, development of safe, effective cannabis-based medicines targeting different mechanisms may have a significant impact in PD therapy.”

Full-text: http://www.molecularneurodegeneration.com/content/10/1/17

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Pure cannabidiol in the treatment of malignant migrating partial seizures in infancy: a case report.

“Malignant migrating partial seizures in infancy is a devastating pharmacoresistent epileptic encephalopathy of unknown etiology characterized by onset in the first 6 months of life, continuous migrating focal seizures with corresponding multifocal electroencephalographic discharges, developmental deterioration, and early mortality.

Recent widespread interest in the nonpsychoactive component of the cannabis plant, cannabidiol, as a potential treatment for refractory devastating epilepsies has led to individual trials initiated by families or physicians in states that have legalized medical marijuana with anecdotal success.

We describe a now 10-month-old boy with malignant migrating partial seizures in infancy who made developmental gains and demonstrated sustained seizure reduction with the addition of cannabidiol to his antiepileptic regimen.

This report supports a role for cannabidiol in the treatment of malignant migrating partial seizures in infancy.”

http://www.ncbi.nlm.nih.gov/pubmed/25882081

http://www.thctotalhealthcare.com/category/epilepsy-2/

CB 1Cannabinoid Receptor Agonist Inhibits Matrix Metalloproteinase Activity in Spinal Cord Injury: A Possible Mechanism of Improved Recovery.

“Increased matrix metalloproteinase (MMP) activity contributes to glial scar formation that inhibits the repair path after spinal cord injury (SCI). We examined whether treatment with N-​(2-​chloroethyl)-​5Z,​8Z,​11Z,​14Z-​eicosatetraenamide (ACEA), a selective synthetic cannabinoid receptor (CB1R) agonist, inhibits MMP and improves functional and histological recovery in a mouse spinal cord compression injury model…

Collectively these data demonstrate that post-injury CB1R agonism can improve SCI outcome and also indicate marked attenuation of MMP-9 proteolytic enzyme activity as a biochemical mechanism.”

http://www.ncbi.nlm.nih.gov/pubmed/25881484

http://www.thctotalhealthcare.com/category/spinal-cord-injury/