Targeting bladder cancer: Potent anti-cancer effects of cannabichromene and delta-9-tetrahydrocannabinol-rich Cannabis sativa strains

Objective: This study aimed to explore the anticancer potential of Cannabis sativa (C. sativa) strains, specifically PARIS, Dairy Queen (DQ), and super cannabidiol (sCBD), on bladder cancer cells. Given the increasing interest in cannabinoids like cannabichromene (CBC) and delta-9-tetrahydrocannabinol (THC) for their therapeutic properties, we evaluated their cytotoxic effects on urothelial carcinoma (UC) cell lines and their ability to inhibit cell migration and induce apoptosis in both two-dimensional cell models and three-dimensional ex vivo organ cultures (EVOCs).

Methods: C. sativa strains were screened for their cytotoxicity against UC cell lines (HTB-4 and HTB-9) using XTT assays. Their phytocannabinoid content was analyzed using high-performance liquid chromatography. We employed fluorescence-activated cell-sorting to determine apoptosis and cell cycle, migration assays to determine cell migration, and EVOCs to evaluate the cytotoxic effect on UC. Gene expression was determined by quantitative polymerase chain reaction.

Results: Three commercial C. sativa strains, PARIS, DQ, and sCBD, were found to have the most potent anticancer effects on bladder cancer cells. All extracts contain CBC and THC at different concentrations. In XTT assays on UC cell lines, PARIS had a half-maximal inhibitory concentration (IC50) of 21.58 μg/mL, while DQ and sCBD had similar cytotoxic activity with IC50 values for 48-h treatment of 17.99 μg/mL and 17.88 μg/mL, respectively. DQ and sCBD extracts were found to significantly reduce cell migration and increase the percentage of cells in S phase and G2/M phase within the cell population. In EVOCs, the extracts initiated cell death with the expression of apoptosis-related genes increased following exposure to treatment.

Conclusion: The findings suggest that C. sativa strains PARIS, DQ, and sCBD, containing CBC and THC, exhibit significant anticancer activity against UC cell lines and ex vivo models. These results underscore the therapeutic potential of CBC- and THC-rich C. sativa extracts in bladder cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/41467200

“This study highlights the potential of commercially available cannabis extracts in inhibiting UC tumors through programmed cell death, the expression of apoptosis-related genes, and cell migration inhibition. The findings emphasize the significance of cannabinoid-specific content over total cannabinoid concentrations in determining their cytotoxic effects. While personalized medicine based on specific strain compositions remains a distant goal, certain cannabinoids like CBC, THC, and CBD show promise in exerting cytotoxic effects.”

“Overall, these findings underscore the potential of cannabis-derived compounds as therapeutic agents in cancer treatment and warrant further investigation.”

https://www.sciencedirect.com/science/article/pii/S2214388225000335?via%3Dihub