Bioreactor-Based Suspension Cultures of Cannabis sativa for Enhanced Production of Anti-Inflammatory Cannabinoid Derivatives

Cannabis sativa synthesizes diverse cannabinoids with significant pharmacological value, but existing suspension cultures show low metabolite yields and limited scalability.

This study establishes bioreactor-based cell suspension system to enhance cannabinoid biosynthesis in C. sativa. Petiole explants cultured on MS medium with 4 mg/L BAP and 0.01 mg/L NAA produced 95.83 ± 0.74% friable callus. Suspension cultures accumulated 352.29 ± 3.90 g/L fresh biomass in 28 days, showing 22.4-fold increase upon scale-up in stirred-tank bioreactor.

Methanolic extracts (60 °C) showed strong anti-inflammatory activity, reducing TNF-α and IL-6 by 88.40 ± 0.87 and 92.03 ± 1.55% at 30 μg mL-1 without cytotoxicity. Metabolomic profiling identified putative cannabinoid derivatives, with THCA-C1 (0.05%) exhibiting highest binding affinity (-8.4 kcal/mol) to inflammatory targets based on docking and dynamics analyses.

Overall, these results provide the first evidence for scalable cannabinoid biosynthesis in bioreactor-grown C. sativa cell suspensions, underscoring their potential for sustainable production of anti-inflammatory therapeutics.”

https://pubmed.ncbi.nlm.nih.gov/41359809

https://pubs.acs.org/doi/10.1021/acs.jafc.5c10683