A Balanced Cannabinoids Mixture Protects Neural Stem/progenitor Cells from CoCl2 Induced Injury by Regulating Autophagy and Inflammation: An in Vitro Study

pubmed logo

“Although tetrahydrocannabinol (THC) and cannabidiol (CBD) have been individually studied for their neuroprotective roles, few studies have addressed the effects of their balanced 1:1 formulation Satinex (STX) under pathologic conditions like hypoxia. Moreover, the effect of STX on embryonic neural stem/progenitor cells (ENS/PCs) derived from the rat embryonic brain, which are highly vulnerable during early development, remains unexplored.

Considering the pivotal role of hypoxia in numerous neuropathological situations, this study examined the impact of STX on rat ENS/PCs exposed to chemically induced hypoxia.

ENS/PCs were isolated from rat embryos and subjected to hypoxia using 100 µM cobalt (II) chloride hexahydrate (CoCl₂0.6 H₂O) for 48 h. Cytotoxic activity of STX andCoCl2was assessed using the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium (MTT) assay, while stem cell identity was confirmed via flow cytometry (Nestin, SOX2). STX (0.1 and 0.5 µM) was applied under both normoxic and hypoxic conditions. Expression levels of hypoxia-inducible factor 1-alpha (Hif1α) mRNA, autophagy markers (Beclin-1, microtubule-associated protein 1 light chain 3-II [LC3-II]), and pro-inflammatory proteins nuclear factor kappa B [NF-κB], Toll-like receptor 2 [TLR2], Toll-like receptor 4 [TLR4]) were assessed using reverse transcription polymerase chain reaction (RT-PCR) and western blot techniques following STX treatment.

Based on flow cytometric assays, over 70% of cultivated cells were positive for Nestin and SOX2. Hypoxia significantly reduced cell viability and proliferation, accompanied by increased Hif1α mRNA expression. Treatment with STX (0.1 µM and 0.5 µM) significantly reversed these changes, restoring cell viability and proliferation while reducing Hif1α levels. Hypoxia also elevated autophagy markers (Beclin-1, LC3-II) and pro-inflammatory proteins (NF-κB, TLR2, TLR4), which STX suppressed in a dose-dependent manner.

This study provides novel evidence that STX mitigates hypoxia-induced neural damage by downregulating Hif1α and its downstream inflammatory and autophagic signaling pathways. The use of a clinically relevant cannabinoids mixture and a developmentally sensitive cell model underline the translational potential of balanced THC/CBD formulations in the treatment of hypoxia-related neurodegenerative and neurodevelopmental conditions.”

https://pubmed.ncbi.nlm.nih.gov/41240218

https://link.springer.com/article/10.1007/s12640-025-00770-2