A Stroll Through Saffron Fields, Cannabis Leaves, and Cherry Reveals the Path to Waste-Derived Antimicrobial Bioproducts

pubmed logo

“Background: The accumulation of agri-food waste is a major environmental and economic challenge and converting these by-products into bioactive compounds fits within the circular bioeconomy. This study aimed to evaluate the antimicrobial potential of extracts derived from Cannabis sativa L. leaves (CSE), Crocus sativus tepals (CST), and Prunus avium L. cherry waste (VCE) against four key bacterial species (Staphylococcus aureusBacillus subtilisEscherichia coli, and Pseudomonas aeruginosa). 

Methods: Minimum inhibitory concentration (MIC) assays were performed to assess antibacterial activity, while a bioinformatic pipeline was implemented to explore possible molecular targets. Full-proteome multiple sequence alignments across the bacterial strains were used to identify conserved, strain-specific proteins, and molecular docking simulations were applied to predict binding interactions between the most abundant compounds in the extracts and their targets. 

Results: CSE and CST demonstrated bacteriostatic activity against S. aureus and B. subtilis (MIC = 15.6 mg/mL), while VCE showed selective activity against B. subtilis (MIC = 31.5 mg/mL). CodY was identified as a putative molecular target for CSE and CST, and ChaA for VCE. Docking results supported the possibility of spontaneous binding between abundant extract constituents and the predicted targets, with high binding affinities triggering a strong interaction network with target sensing residues. 

Conclusions: This study demonstrates the antimicrobial activity of these agri-food wastes and introduces a comprehensive in vitro and in silico workflow to support the bioactivity of these agri-food wastes and repurpose them for innovative, eco-sustainable applications in the biotechnology field and beyond.”

https://pubmed.ncbi.nlm.nih.gov/40732292/

“Given the observed antimicrobial activity against foodborne and surface-associated pathogens, the findings suggest that these extracts may hold promise for use in natural food preservation or environmental hygiene applications.The approach and the evidence adopted here and provided in this study could be useful for future for more eco-friendly and cost-effective strategies to develop waste-derived bioproducts for different purposes.”

https://www.mdpi.com/1424-8247/18/7/1003


Leave a Reply

Your email address will not be published. Required fields are marked *