The Use of Dispensary-Obtained Tetrahydrocannabinol as a Treatment for Neuropsychiatric Symptoms of Dementia

pubmed logo

“Objective: Neuropsychiatric symptoms (NPS) of dementia represent a large driver of health care costs, caregiver burden, and institutionalization of people with dementia. Management options are limited, and antipsychotics are often used, although they carry a significant side effect profile. One novel option is tetrahydrocannabinol (THC); however, in the US, to obtain THC for patients with dementia, caregivers have to go to a commercial dispensary. We evaluated the effectiveness of dispensary-obtained THC for patients with dementia and NPS.

Methods: Two independent reviewers reviewed charts of patients with diagnosed dementia (N = 50) seen in geriatric psychiatry between 2017 and 2021 for whom dispensary-obtained THC was recommended. The primary outcome was effectiveness in treating NPS; secondary outcomes were the proportion of caregivers who obtained and administered THC (uptake), post-THC antipsychotic use, and adverse reactions leading to treatment discontinuation.

Results: Caregiver uptake of dispensary-obtained THC was high (38/50, 76%). The majority of patients (30/38, 79%) who took THC had an improvement in NPS according to their caregivers. THC was recommended most often for the NPS of agitation, aggression, irritability, lability, anxiety, and insomnia. Among the 20 patients who were taking antipsychotics at baseline and took THC, over half (12/20, 60%) were able to decrease or discontinue the antipsychotic. Adverse reactions to THC included dizziness, worsening of agitation, and worsening of paranoia; two caregivers of patients who took THC reported adverse reactions that led to treatment discontinuation.

Conclusions: Our results suggest that dispensary-obtained THC can be effective in managing a subset of NPS in patients with dementia and may decrease the requirement for antipsychotics.”

The Role of Hemp ( Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition

pubmed logo

“Recently, there has been a renewed interest in Cannabis sativa and its uses. The recreational use of inflorescences as a source of THC has led to the legal restriction of C. sativa cultivation to limit the detrimental effects of psychotropic substance abuse on health. However, this has also limited the cultivation of textile/industrial varieties with a low content of THC used for textile and nutritional purposes. While previously the bans had significantly penalized the cultivation of C. sativa, today many countries discriminate between recreational use (marijuana) and industrial and food use (hemp). The stalks of industrial hemp (low in psychotropic substances) have been used extensively for textile purposes while the seeds are nutritionally versatile. From hemp seeds, it is possible to obtain flours applicable in the bakery sector, oils rich in essential fatty acids, proteins with a high biological value and derivatives for fortification, supplementation and nutraceutical purposes. Hemp seed properties seem relevant for vegetarian diets, due to their high nutritional value and underestimated employment in the food sector. Hemp seed and their derivatives are a valuable source of protein, essential fatty acids and minerals that could provide additional benefit to vegetarian nutrition. This document aims to explore the information available in the literature about hemp seeds from a nutritional point of view, highlighting possible beneficial effects for humans with particular attention to vegetarian nutrition as a supplemental option for a well-planned diet.”

Transcriptomic Profiling after In Vitro Δ8-THC Exposure Shows Cytoskeletal Remodeling in Trauma-Injured NSC-34 Cell Line

pubmed logo

“Neuronal cell death is a physiological process that, when uncontrollable, leads to neurodegenerative disorders like spinal cord injury (SCI). SCI represents one of the major causes of trauma and disabilities worldwide for which no effective pharmacological intervention exists. Herein, we observed the beneficial effects of Δ8-Tetrahydrocannabinol (Δ8-THC) during neuronal cell death recovery. We cultured NSC-34 motoneuron cell line performing three different experiments. A traumatic scratch injury was caused in two experiments. One of the scratched was pretreated with Δ8-THC to observe the role of the cannabinoid following the trauma. An experimental control group was neither scratched nor pretreated. All the experiments underwent RNA-seq analysis. The effects of traumatic injury were observed in scratch against control comparison. Comparison of scratch models with or without pretreatment highlighted how Δ8-THC counteracts the traumatic event. Our results shown that Δ8-THC triggers the cytoskeletal remodeling probably due to the activation of the Janus Kinase Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway and the signaling cascade operated by the Mitogen-Activated Protein (MAP) Kinase signaling pathway. In light of this evidence, Δ8-THC could be a valid pharmacological approach in the treatment of abnormal neuronal cell death occurring in motoneuron cells.”

The Effect of Orally Administered Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) on Obesity Parameters in Mice

pubmed logo

“Prolonged cannabis users show a lower prevalence of obesity and associated comorbidities. In rodent models, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from the plant Cannabis sativa L. have shown anti-obesity properties, suggesting a link between the endocannabinoid system (ECS) and obesity. However, the oral administration route has rarely been studied in this context. The aim of this study was to investigate the effect of prolonged oral administration of pure THC and CBD on obesity-related parameters and peripheral endocannabinoids. C57BL/6 male mice were fed with either a high-fat or standard diet and then received oral treatment in ramping doses, namely 10 mg/kg of THC or CBD for 5 weeks followed by 30 mg/kg for an additional 5 weeks. Mice treated with THC had attenuated weight gain and improved glucose tolerance, followed by improvement in steatosis markers and decreased hypertrophic cells in adipose epididymal tissue. Mice treated with CBD had improved glucose tolerance and increased markers of lipid metabolism in adipose and liver tissues, but in contrast to THC, CBD had no effect on weight gain and steatosis markers. CBD exclusively decreased the level of the endocannabinoid 2-arachidonoylglycerol in the liver. These data suggest that the prolonged oral consumption of THC, but not of CBD, ameliorates diet-induced obesity and metabolic parameters, possibly through a mechanism of adipose tissue adaptation.”

“In conclusion, the present findings provide evidence for the ability of THC to improve obesity-related metabolic complications when administered orally in ramping doses. The limited effect of CBD demonstrated in our study suggests that the low prevalence of obesity and metabolic diseases seen in cannabis users is mainly attributed to the presence of THC.”

Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy

pubmed logo

“In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.”

Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages

pubmed logo

“Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.”

In Vitro and In Vivo Anti-Inflammatory Effects of Cannabidiol Isolated from Novel Hemp ( Cannabis sativa L.) Cultivar Pink Pepper

pubmed logo

“Cannabis sativa L. contains more than 80 cannabinoids, among which cannabidiol (CBD) is the main neuroactive component. We aimed to investigate the anti-inflammatory efficacy of CBD in vitro and in vivo isolated from “Pink pepper”, a novel hemp cultivar, by repeating the method of selecting and cultivating individuals with the highest CBD content. We investigated the effects of CBD on inflammatory markers elevated by lipopolysaccharide (LPS) treatment in RAW 264.7 mouse macrophage cells through Western blot and RT-PCR. In addition, we confirmed these effects through the ELISA of inflamed paw tissue of a λ-carrageenan-induced mouse edema model that received an oral administration of CBD. CBD inhibited the LPS-induced phosphorylation of NF-κB and MAPK in RAW 264.7 and exhibited anti-inflammatory effects by participating in these pathways. In our in vivo study, we confirmed that CBD also inhibited the inflammatory mediators of proteins extracted from edematous mouse paw tissue. These results show that CBD isolated from “Pink pepper” exhibits potent anti-inflammatory effects. These anti-inflammatory effects of CBD have pharmacological and physiological significance, highlighting the industrial value of this novel cultivar.”

Phytocannabinoids Reduce Seizures in Larval Zebrafish and Affect Endocannabinoid Gene Expression

pubmed logo

“Cannabis has demonstrated anticonvulsant properties, and about thirty percent of epileptic patients do not have satisfactory seizure management with standard treatment and could potentially benefit from cannabis-based intervention. Here, we report the use of cannabinoids to treat pentylenetetrazol (PTZ)-induced convulsions in a zebrafish model, their effect on gene expression, and a simple assay for assessing their uptake in zebrafish tissues. Using an optimized behavioral assay, we show that cannabidiol (CBD) and cannabichromene (CBC) and cannabinol (CBN) are effective at reducing seizures at low doses, with little evidence of sedation, and our novel HPLC assay indicates that CBC is effective with the lowest accumulation in larval tissues. All cannabinoids tested were effective at higher concentrations. Pharmacological manipulation of potential receptors demonstrates that Gpr55 partially mediates the anticonvulsant effects of CBD. Treatment of zebrafish larvae with endocannabinoids, such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA), altered larvae movement, and the expression of genes that regulate their metabolism was affected by phytocannabinoid treatment, highlighting the possibility that changes to endocannabinoid levels may represent one facet of the anticonvulsant effect of phytocannabinoids.”

Molecular Docking Integrated with Network Pharmacology Explores the Therapeutic Mechanism of Cannabis sativa against Type 2 Diabetes

pubmed logo

“The incidence of type 2 diabetes (T2D) is rising, and finding new treatments is important. C. sativa is a plant suggested as a potential treatment for T2D, but how it works needs to be clarified. This study explored the pharmacological mechanism of C. sativa in treating T2D. We identified the active compounds in C. sativa and their targets. From there, we examined the genes associated with T2D and found overlapping genes. We conducted an enrichment analysis and created a protein-protein and target-compound interactions network. We confirmed the binding activities of the hub proteins and compounds with molecular docking. We identified thirteen active compounds from C. sativa, which have 150 therapeutic targets in T2D. The enrichment analysis showed that these proteins are involved in the hormone, lipid, and stress responses. They bind transcription factors and metals and participate in the insulin, PI3K/Akt, HIF-1, and FoxO signaling pathways. We found four hub proteins (EGFR, ESR1, HSP90AA1, and SRC) that bind to the thirteen bioactive compounds. This was verified using molecular docking. Our findings suggest that C. sativa‘s antidiabetic action is carried out through the insulin signaling pathway, with the participation of HIF-1 and FoxO.”

Identification of phenolic compounds from inflorescences of non-psychoactive Cannabis sativa L. by UHPLC-HRMS and in vitro assessment of the antiproliferative activity against colorectal cancer

pubmed logo

“Phenolic compounds from Cannabis sativa L. (Cannabaceae family), in particular cannflavins, are known to possess several biological properties. However, their antiproliferative activity, being of great interest from a medicinal chemistry point of view, has not been deeply investigated so far in the literature. In the light of this, the aim of this study was to obtain an enriched fraction of polyphenols (namely PEF) from inflorescences of a non-psychoactive C. sativa (hemp) variety and to evaluate its antiproliferative activity against cancer cells, capitalizing on a new and selective extraction method for hemp polyphenols, followed by preparative flash column chromatography. Untargeted metabolomics, using a new method based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), was applied here for the first time to fully characterize PEF. Then, the main phenolic compounds were quantified by HPLC-UV. The antiproliferative activity of PEF and of the isolated compounds was assessed in vitro for the first time against Caco-2 and SW480 human colon adenocarcinoma cell lines providing promising IC50 values, in comparison with the reference drug used in therapy for this cancer type. Based on these results, PEF can be considered as a new highly potential therapeutic product to be further investigated against colorectal cancer, thanks to the possible synergistic interaction of its compounds.”