Cannabidiol protects against high glucose-induced oxidative stress and cytotoxicity in cardiac voltage-gated sodium channels.

Publication cover image“Cardiovascular complications are the major cause of mortality in diabetic patients. However, the molecular mechanisms underlying diabetes-associated arrhythmias are unclear.

We hypothesized that high glucose, could adversely affect Nav1.5, the major cardiac sodium channel isoform of the heart, at least partially via oxidative stress.

We further hypothesized that cannabidiol (CBD), one of the main constituents of Cannabis sativa, through its effects on Nav1.5, could protect against high glucose elicited oxidative stress and cytotoxicity.

KEY RESULTS:

High glucose evoked cell death associated with elevation in reactive oxygen species, right shifted the voltage dependence of conductance and steady state fast inactivation and increased persistent current leading to computational prolongation of action potential (hyperexcitability) which could result in long QT3 arrhythmia. CBD mitigated all the deleterious effects provoked by high glucose. Perfusion with Lidocaine (a well-known sodium channels inhibitor with anti-oxidant effects), or co-incubation of Tempol (a well-known anti-oxidant) elicited protection, comparable to CBD, against the deleterious effects of high glucose.

CONCLUSIONS AND IMPLICATIONS:

These findings suggest that, through its favourable anti-oxidant and sodium channel inhibitory effects, CBD may protect against high-glucose induced arrhythmia and cytotoxicity.”

https://www.ncbi.nlm.nih.gov/pubmed/32077098

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.15020

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol as a treatment option for schizophrenia: recent evidence and current studies.

Image result for current opinion in psychiatry “The most recent studies published or initiated in the last 18 months, investigating cannabidiol in the treatment of symptoms of schizophrenia and related conditions are summarized, including observed tolerability and reported side-effects.

RECENT FINDINGS:

Recent studies focused on patients with sub-acute psychotic syndromes of schizophrenia, clinical high-risk state for psychosis (CHR-P), or frequent cannabis users, as well as cognitive functioning in chronic schizophrenia. There is further, although not consistent evidence for cannabidiol-reducing positive symptoms, but not negative symptoms. Evidence for improvement of cognition was weaker, with one study reporting a worsening. Regarding side effects and tolerability, cannabidiol induced sedation in one study, with the other studies indicating good tolerability, even at high doses.

SUMMARY:

Recent clinical trials added further evidence for an antipsychotic potential of cannabidiol. In general, studies following trial designs as suggested by regulators in schizophrenia are needed in sufficient numbers to clarify the safety and efficacy of cannabidiol herein. In addition, such studies will further elucidate its ability to target specific aspects of the syndrome, such as negative or cognitive symptoms. Furthermore, aiming for an add-on treatment with cannabidiol will require further studies to identify potentially useful or even harmful combinations.”

https://www.ncbi.nlm.nih.gov/pubmed/32073423

https://journals.lww.com/co-psychiatry/Abstract/publishahead/Cannabidiol_as_a_treatment_option_for.99134.aspx

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Tetrahydrocannabinol and cannabidiol oromucosal spray in resistant multiple sclerosis spasticity: consistency of response across subgroups from the SAVANT randomized clinical trial.

 Publication Cover“To determine whether differences in disability status, spasticity severity, and spasticity duration at treatment start in patients with resistant multiple sclerosis (MS) spasticity might influence response to add-on tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (nabiximols) versus further re-adjustment of optimized first-line antispasticity medication.

Methods: Using the database from the Sativex® as Add-on therapy Vs. further optimized first-line ANTispastics (SAVANT) study, this post hoc analysis evaluated spasticity severity (0-10 Numerical Rating Scale [NRS] scores) and pain severity (0-10 NRS scores) evolution from randomization (baseline) to week 12 (end of double-blind treatment) in defined subgroups: Expanded Disability Status Scale [EDSS] score subgroups (< 6 and ≥6); spasticity severity 0-10 NRS score subgroups (4 to ≤6 and >6), and spasticity duration subgroups (< 5 and ≥5 years).

Results: THC:CBD oromucosal spray (nabiximols) halved mean severity scores for spasticity and pain in all subgroups. Active treatment significantly improved mean spasticity severity scores versus placebo from week 4 onwards in both EDSS subgroups, in the severe spasticity subgroup, and in both spasticity duration subgroups. Active treatment significantly improved mean pain severity scores versus placebo in the ≥6 EDSS subgroup, in the severe spasticity subgroup and in both spasticity duration subgroups.

Conclusion: Add-on THC:CBD oromucosal spray (nabiximols) consistently relieves resistant spasticity across subgroups defined by baseline EDSS score, spasticity severity NRS score and spasticity duration. Patients with moderate resistant MS spasticity benefit numerically from treatment; patients with severe resistant spasticity achieve significant therapeutic gains. Spasticity-associated pain often improves similarly in the same subgroups.”

https://www.ncbi.nlm.nih.gov/pubmed/32065006

https://www.tandfonline.com/doi/abs/10.1080/00207454.2020.1730832?journalCode=ines20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets.

Biochemical Pharmacology“The cellular microenvironment plays a critical role in the maintenance of bone marrow-derived mesenchymal stem cells (BM-MSCs) and their subsequent cell lineage differentiation. Recent studies suggested that individuals with adipocyte-related metabolic disorders have altered function and adipogenic potential of adipose stem cell subpopulations, primarily BM-MSCs, increasing the risk of heart attack, stroke or diabetes.

In this study, we explored the potential therapeutic effect of some of the most abundant non-euphoric compounds derived from the Cannabis sativa plant (or phytocannabinoids) including tetrahydrocannabivarin (THCV), cannabidiol (CBD), cannabigerol (CBG), cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA), by analysing their pharmacological activity on the viability of endogenous BM-MSCs as well as their ability to alter BM-MSC proliferation and differentiation into mature adipocytes.

We provide evidence that CBD, CBDA, CBGA and THCV (5 µM) increase the number of viable BM-MSCs; whereas only CBG (5 µM) and CBD (5 µM) alone or in their combination promote their maturation into adipocytes via distinct molecular mechanisms. These effects were revealed both in vitro and in vivo. In addition, phytocannabinoids prevented the insulin signalling impairment induced by palmitate in adipocytes differentiated from BM-MSCs.

Our study highlights phytocannabinoids as a potential novel pharmacological tool to regain control of functional adipose tissue in unregulated energy homeostasis often occurring in metabolic disorders including type 2 diabetes mellitus (T2DM), aging and lipodystrophy.”

https://www.ncbi.nlm.nih.gov/pubmed/32061773

“The promiscuous pharmacology of phytocannabinoids makes them viable candidates for new medicines for the treatment of metabolic syndromes through the simultaneous resolution of collective complications due to impaired development, maintenance, activity and function of the adipose tissue. Furthermore, phytocannabinoids are generally well tolerated in comparison to potent synthetic PPAR agonists, and combination treatments may further improve their efficacy at lower doses.”

https://www.sciencedirect.com/science/article/pii/S0006295220300873?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain.

Journal of Pharmacology and Experimental Therapeutics: 372 (3)“Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis are long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects.

In our study we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer induced bone pain (CIBP). Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activate CB1 and CB2 receptors inhibiting inflammation and pain.

Together, these data support the application for MJN110 as a novel therapeutic for cancer induced bone pain.

SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid based therapies is essential and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.”

https://www.ncbi.nlm.nih.gov/pubmed/32054717

http://jpet.aspetjournals.org/content/early/2020/02/13/jpet.119.262337

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Axially-Chiral Cannabinols: A New Platform for Cannabinoid-Inspired Drug Discovery.

Publication cover image“Phytocannabinoids (and synthetic analogs thereof) are gaining significant attention as promising leads in modern medicine. Considering this, new directions for the design of phytocannabinoid-inspired molecules is of immediate interest. In this regard, we have hypothesized that axially-chiral-cannabinols (ax-CBNs), unnatural and unknown isomers of cannabinol (CBN) may be valuable scaffolds for cannabinoid-inspired drug discovery. There are two main factors directing our interest to these scaffolds: (a) ax-CBNs would have ground-state three-dimensionality; ligand-receptor interactions can be more significant with complimentary 3D-topology, and (b) ax-CBNs at their core structure are biaryl molecules, generally attractive platforms for pharmaceutical development due to their ease of functionalization and stability. Herein we report a synthesis of ax-CBNs, examine physical properties experimentally and computationally, and perform a comparative analysis of ax-CBN and THC in mice behavioral studies.”

https://www.ncbi.nlm.nih.gov/pubmed/32061146

https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.202000025

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Mechanisms of Cannabinoids and Potential Applicability to Skin Diseases.

SpringerLink“The legalisation of cannabis in a growing number of jurisdictions has led to increasing interest in its potential therapeutic effects in a range of disorders, including cutaneous conditions. Cannabinoids have been used as natural medicines for centuries; however, their biological activity in the skin is a new area of study.

Recent data suggest that cannabinoids are involved in neuro-immuno-endocrine modulation of skin functioning, yet their effect on the features of dermatologic conditions is unclear. This article sought to review the mechanisms by which cannabinoids regulate skin functioning through the lens of relevance to treatment of dermatologic diseases looking at the effects of cannabinoids on a range of cellular activities and dermatologic conditions both in vitro and in vivo.

We identified studies demonstrating an inhibitory effect of cannabinoids on skin inflammation, proliferation, fibrosis, pain, and itch-biological mechanisms involved in the pathogenesis of many dermatologic conditions.

Cannabinoids have the potential to expand the therapeutic repertoire of a wide spectrum of skin disorders. Given their widespread unregulated use by the general public, basic and clinical studies are required to elucidate the effectiveness and long-term effects of topical and systemic cannabinoids in cutaneous disorders.”

“The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders.” https://www.ncbi.nlm.nih.gov/pubmed/30138623

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Possible therapeutic applications of cannabis in the neuropsychopharmacology field.

European Neuropsychopharmacology“Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids.

These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties.

These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders.

Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders.

Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/32057592

https://www.sciencedirect.com/science/article/abs/pii/S0924977X20300365?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Inhibition of autophagic flux differently modulates cannabidiol-induced death in 2D and 3D glioblastoma cell cultures.

 Scientific Reports“Radiotherapy combined with chemotherapy is the major treatment modality for human glioblastoma multiforme (GBM). GBMs eventually relapse after treatment and the average survival of GBM patients is less than two years.

There is some evidence that cannabidiol (CBD) can induce cell death and increases the radiosensitivity of GBM by enhancing apoptosis. Beside initiation of death, CBD has been demonstrated as an inducer of autophagy.

In the present study, we address the question whether CBD simultaneously induces a protective effect in GBM by upregulating autophagy. Addition of chloroquine that suppressed autophagic flux to 2D GBM cultures increased CBD-induced cell death, presenting proof for the protective autophagy.

Blockage of autophagy upregulated radiation-induced cytotoxicity but only modestly affected the levels of cell death in CBD- or CBD/γ-irradiated 3D GBM cultures. Furthermore, CBD enhanced the pro-apoptotic activities of JNK1/2 and MAPK p38 signaling cascades while partially downregulated the pro-survival PI3K-AKT cascade, thereby changing a balance between cell death and survival.

Suppression of JNK activation partially reduced CBD-induced cell death in 3D GBM cultures. In contrast, co-treatment of CBD-targeted cells with inhibitors of PI3K-AKT-NF-κB, IKK-NF-κB or JAK2-STAT3 pathways killed surviving GBM cells in both 2D and 3D cultures, potentially improving the therapeutic ratio of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/32060308

“Killing efficiency of cannabinoids (CBD, THC and their combination CBD+THC) against GBM in vitro and in animal experiments has been elucidated in numerous studies during the last 15 years. Additional investigations also confirmed a cytotoxic role of cannabinoids for several other types of cancer. A number of studies demonstrated the efficiency of combined treatments of cannabinoids together with γ-irradiation in both cell culture and in animal experiments.”

https://www.nature.com/articles/s41598-020-59468-4

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The proposed mechanisms of action of CBD in epilepsy.

Image result for epileptic disorders journal“Highly purified cannabidiol (CBD) (approved as Epidiolex® in the United States and as EPIDYOLEX from the EU agency) has demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut or Dravet syndrome in four randomized controlled trials. While the mechanism of action of CBD underlying the reduction of seizures in humans is unknown, CBD possesses affinity for multiple targets, across a range of target classes, resulting in functional modulation of neuronal excitability, relevant to the pathophysiology of many disease types, including epilepsy. Here we present the pharmacological data supporting the role of three such targets, namely Transient receptor potential vanilloid-1 (TRPV1), the orphan G protein-coupled receptor-55 (GPR55) and the equilibrative nucleoside transporter 1 (ENT-1).”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous