A new cannabigerol derivative, LE-127/2, induces autophagy mediated cell death in human cutaneous melanoma cells

pubmed logo

“Despite the targeted- and immunotherapies used in the past decade, survival rate among patients with metastatic melanoma remains low, therefore, melanoma is responsible for the majority of skin cancer-related deaths.

The ongoing investigation of natural antitumor agents, the nonpsychoactive cannabinoid, cannabigerol (CBG) found in Cannabis sativa is emerging as a promising candidate. CBG offers a potential therapeutic role in the treatment of melanoma demonstrating cell growth inhibition in some tumors. Its low water solubility and bioavailability hinder the potential effectiveness. To address these challenges, a modified CBG, namely LE-127/2 was synthesized by Mannich-type reaction.

The aim was to investigate the effect of this novel compound on cell proliferation as well as the mechanism of cell death with a particular focus on autophagy and apoptosis.

Human cutan melanoma cell lines, WM35, A2058 and WM3000 were utilized for the present study. Cell proliferation of the cells after the treatment with LE-127/2, parent CBG or vemurafenib was assessed by Cell Titer Blue Assay. Cells were treated with a 1.25-80 µM of the above-mentioned compounds, and it was found that at 20 μM of all drugs showed a comparable effective inhibition of cell proliferation, however, vemurafenib and CBG proved to be more effective than LE-127/2. In addition, clonogenic cell survival assays were performed to examine the inhibitory effect of LE-127/2 on the colony formation ability of melanoma cell lines.

Cells treated with 20 µM of LE-127/2 for 14 days showed about a 50% suppression of clonogenic cell survival. LE-127/2 exerted the most intensive inhibition on A2058 cell colonies. Furthermore, notably, LDH cytotoxicity assay performed on HaCaT cell line, proved LE-127/2 to be cytotoxic only at higher concentration, such as 80 μM, while the parent CBG was cytotoxic at concentration as low as 5 μM, suggesting that the new CBG derivative as a drug candidate may be applied in human pharmacotherapy without causing a substantial damage in intact epidermal cells. Analysis of protein expression revealed the impact of LE-127/2 on the expression of basic proteins (LC-3, Beclin-1 and p62) involved in the process of autophagy in the three different melanoma cell lines studied. Elevated expression of these proteins was detected as a result of LE-127/2 (20 µM) treatment. LE-127/2 also induced the expression of some proteins involved in apoptosis, and it is particularly noteworthy the increased level of cleaved PARP.

Based on the results obtained, it can be concluded that LE-127/2 induced autophagy could lead to the inhibition of cell proliferation and death in melanoma cells.”

https://pubmed.ncbi.nlm.nih.gov/39357769/

https://www.sciencedirect.com/science/article/pii/S0928098724002331?via%3Dihub

Rooted in therapeutics: comprehensive analyses of Cannabis sativa root extracts reveals potent antioxidant, anti-inflammatory, and bactericidal properties

pubmed logo

“Following the legalization of recreational Cannabis in Canada in 2018, the associated waste, including Cannabis roots, has significantly increased. Cannabis roots, comprising 30%-50% of the total plant, are often discarded despite their historical use in Ayurvedic medicine for treating inflammatory and infectious disorders.

This study evaluates the phytochemical and therapeutic properties of Cannabis root extracts from a high tetrahydrocannabinolic acid, low cannabidiolic acid cultivar (variety Alien Gorilla Glue).

We performed ultra high-performance liquid chromatography coupled with mass spectrometry (UPLC-QTOF-MS) to identify the chemical components of the Cannabis roots. Extracts using water, ethanol and acid-base solvents were tested for antioxidant activity through free radical scavenging, metal chelation, and lipoperoxidation inhibition assays. Mitochondrial membrane protection was assessed using flow cytometry with the MitoPerOx probe in THP-1 monocytic leukemia cells. Anti-inflammatory potential was evaluated by measuring interleukin-6 levels in lipopolysaccharide-stimulated THP-1 cells. Bactericidal/fungicidal efficacy against Escherichia coliStaphylococcus aureus, and Candida albicans was determined using the p-iodonitrophenyltetrazolium assay. Additionally, we investigated the anticholinesterase activity of Cannabis root extracts, given the potential role of plant alkaloids in inhibiting cholinesterase, an enzyme targeted in Alzheimer’s disease treatments. UPLC-QTOF-MS analysis suggested the presence of several phenolic compounds, cannabinoids, terpenoids, amino acids, and nitrogen-containing compounds.

Our results indicated significant antioxidant, bactericidal, and anticholinesterase properties of Cannabis root extracts from both soil and hydroponic cultivation.

Extracts showed strong antioxidant activity across multiple assays, protected mitochondrial membrane in THP-1 cells, and exhibited anti-inflammatory and bactericidal/fungicidal efficacy. Notably, soil-cultivated roots displayed superior anti-inflammatory effects.

These findings demonstrate the remarkable antioxidant, anti-inflammatory, and anti-microbial activities of Cannabis roots, supporting their traditional uses and challenging their perception as mere waste. This study highlights the therapeutic potential of Cannabis roots extracts and suggests avenues for further research and application.”

https://pubmed.ncbi.nlm.nih.gov/39351095/

“In conclusion, this study sheds light on the chemical profile and significant therapeutic potential of Cannabis root extracts, confirming the validity of their traditional uses and challenging their conventional status as waste products of Cannabis cultivation.

The results presented in this work add evidence to the broad spectrum of biological systems in which Cannabis-sourced derivatives have a potential effect, not only because of cannabinoids, but also because of the possible action of phenolic and nitrogen-containing compounds. Through comprehensive investigation, we have demonstrated their remarkable antioxidant, anticholinesterase, and anti-inflammatory activities, along with their ability to protect mitochondrial membranes.

These findings underscore the importance of reevaluating the utilization of Cannabis roots in various therapeutic contexts, potentially offering new avenues for drug discovery and development. By recognizing the value of these often-overlooked plant components, we may uncover novel treatments for a range of medical conditions, thereby contributing to the advancement of natural product pharmacology and healthcare innovation. Further research in this area is warranted to elucidate the underlying mechanisms and explore the full therapeutic potential of Cannabis root extracts.”

https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1465136/full

Repeated Administration of a Full-Spectrum Cannabidiol Product, Not a Cannabidiol Isolate, Reverses the Lipopolysaccharide-Induced Depressive-Like Behavior and Hypolocomotion in a Rat Model of Low-Grade Subchronic Inflammation

pubmed logo

“Background: Mounting evidence suggests that the phytocannabinoid cannabidiol (CBD) holds promise as an antidepressant agent in conditions underlined by inflammation. Full-spectrum CBD extracts might provide greater behavioral efficacy than CBD-only isolates and might require lower doses to achieve the same outcomes due to the presence of other cannabinoids, terpenes, and flavonoids. However, investigations in this area remain limited. 

Methods: We evaluated the behavioral response to the administration for 7 days of 15 and 30 mg/kg of a CBD isolate and a full-spectrum CBD product in a rat model of subchronic lipopolysaccharide (LPS, 0.5 mg/kg/day/7 days, intraperitoneal)-induced depressive-like and sickness behavior. The forced swim test was used to assess depressive-like behavior, the open field test (OFT) to assess locomotion, and the elevated plus maze to assess anxiety-like behavior. 

Results: The full-spectrum CBD extract at both doses, but not the CBD isolate, reversed the LPS-induced depressive-like behavior in the forced swim test. Moreover, the full-spectrum CBD extract at the higher dose but not the CBD isolate restored the subchronic LPS-induced hypolocomotion in the OFT. Repeated administration of both formulations elicited an anxiogenic-like trend in the elevated plus maze. 

Conclusion: Full-spectrum CBD products might have greater therapeutic efficacy in resolving inflammation-induced depressive and sickness behavior compared to a CBD-only isolate.”

https://pubmed.ncbi.nlm.nih.gov/39347620/

https://www.liebertpub.com/doi/10.1089/can.2024.0086

Chronic cannabidiol treatment induces cardiovascular improvement in renovascular hypertensive rats

pubmed logo

“Background: Cannabidiol (CBD) is increasingly studied for its therapeutic potential in neurodegenerative diseases. Previous research on acute CBD administration has demonstrated cardiovascular benefits in hypertensive rats, including reduced mean blood pressure and oxidative stress.

Aim: To investigate the long-term cardiovascular effects of chronic CBD treatment in renovascular hypertension induced by the 2-kidney-1-clip (2K1C) model.

Methods: Male Wistar rats (180-200 g, 8 weeks old) underwent 2K1C or SHAM surgery. Six weeks later, rats received chronic CBD treatment (20 mg/kg, twice daily for 14 days). A combination of ex vivo, in vitro, and in vivo methods was used to assess CBD’s cardiovascular effects in 2K1C hypertensive rats.

Results: Chronic CBD treatment significantly reduced blood pressure and the depressor response to hexamethonium (a ganglionic blocker). It also normalized variability in low-frequency (LF) power and LF/high-frequency (HF) ratio. CBD enhanced vasodilation and reduced vasoconstriction in the mesenteric artery of 2K1C rats, accompanied by decreased expression of aortic reactive oxygen species (ROS).

Conclusion: Our findings suggest that chronic CBD treatment exerts antihypertensive effects by improving baroreflex sensitivity and vascular function while decreasing arterial ROS levels and sympathetic nerve activity. These results underscore CBD’s potential therapeutic role in managing cardiovascular complications associated with renovascular hypertension.”

https://pubmed.ncbi.nlm.nih.gov/39351852/

https://journals.lww.com/jhypertension/abstract/9900/chronic_cannabidiol_treatment_induces.554.aspx

Molecular Targets of Minor Cannabinoids in Breast Cancer: In Silico and In Vitro Studies

pubmed logo

“Background: Breast cancer therapy has been facing remarkable changes. Classic treatments are now combined with other therapies to improve efficacy and surpass resistance. Indeed, the emergence of resistance demands the development of novel therapeutic approaches. Due to key estrogen signaling, estrogen receptor-positive (ER+) breast cancer treatment has always been focused on aromatase inhibition and ER modulation. Lately, the effects of phytocannabinoids, mainly Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have been evaluated in different cancers, including breast. However, Cannabis sativa contains more than 120 phytocannabinoids less researched and understood.

Methods: Here, we evaluated, both in silico and in vitro, the ability of 129 phytocannabinoids to modulate important molecular targets in ER+ breast cancer: aromatase, ER, and androgen receptor (AR).

Results: In silico results suggested that some cannabinoids may inhibit aromatase and act as ERα antagonists. Nine selected cannabinoids showed, in vitro, potential to act either as ER antagonists with inverse agonist properties, or as ER agonists. Moreover, these cannabinoids were considered as weak aromatase inhibitors and AR antagonists with inverse agonist action.

Conclusions: Overall, we present, for the first time, a comprehensive analysis of the actions of the phytocannabinoids in targets of ER+ breast tumors, pointing out their therapeutic potential in cancer and in other diseases.”

https://pubmed.ncbi.nlm.nih.gov/39338407/

“From the best of our knowledge, this is the first study exploring the molecular targets of minor cannabinoids and, together with previous studies, it reinforces the importance and therapeutic potential of cannabinoids in breast cancer, paving the way for novel and alternative therapeutic approaches and highlighting the medicinal potential of Cannabis.”

https://www.mdpi.com/1424-8247/17/9/1245

Cannabis sativa L. Extract Alleviates Neuropathic Pain and Modulates CB1 and CB2 Receptor Expression in Rat

pubmed logo

“Introduction: Cannabis sativa L. (CSL) extract has pain-relieving potential due to its cannabinoid content, so the effects of two CSL extracts on alleviating neuropathic pain were investigated in vivo. Methods and groups: Male Wistar rats (n = 130) were divided into groups and received vincristine (0.1 mg/kg) and gabapentin (60 mg/kg) to induce and relieve neuropathic pain or CSL extracts (D and B). The mRNA and protein expression of the cannabinoid receptors type 1 and 2 (CB1R, CB2R) were evaluated in the cerebral cortex, hippocampus, and lymphocytes. Behavioural tests (Tail-Flick and von Frey) were performed on all animals.

Results: VK-induced neuropathic pain was accompanied by decreased CB1R protein level and CB2R mRNA expression in the cortex. Gabapentin relieved pain and increased CB1R protein levels in the hippocampus compared to the vincristine group. Hippocampus CB1R protein expression increased with the administration of extract D (10 mg/kg, 40 mg/kg) and extract B (7.5 mg/kg, 10 mg/kg) compared to VK group. In the cerebral cortex CSL decreased CB1R protein expression (10 mg/kg, 20 mg/kg, 40 mg/kg of extract B) and mRNA level (5 mg/kg, 7.5 mg/kg of extract B; 20 mg/kg of extract D) compared to the VK-group.CB2R protein expression increased in the hippocampus after treatment with extract B (7.5 mg/kg) compared to the VK-group. In the cerebral cortex extract B (10 mg/kg, 20 mg/kg) increased CB2R protein expression compared to VK-group.

Conclusion: Alterations in cannabinoid receptor expression do not fully account for the observed behavioural changes in rats. Therefore, additional signalling pathways may contribute to the initiation and transmission of neuropathic pain. The Cannabis extracts tested demonstrated antinociceptive effects comparable to gabapentin, highlighting the antinociceptive properties of Cannabis extracts for human use.”

https://pubmed.ncbi.nlm.nih.gov/39334832/

“Furthermore, both tested Cannabis sativa L. extracts demonstrated antinociceptive effects comparable to gabapentin, highlighting the potential medical value of Cannabis extracts for human use.”

https://www.mdpi.com/2218-273X/14/9/1065

Hemp Seed (Cannabis sativa L.) Varieties: Lipids Profile and Antioxidant Capacity for Monogastric Nutrition

pubmed logo

“The present research aimed to study the proximate composition, fatty acid profile, antiox-idant activity, total phenolic and N-trans-Caffeoyltyramine content of three distinct varieties of hemp seeds (CarmaenectaEnectaliana and Enectarol, grown in a Mediterranean area (Central Italy), as feed in the diet of farm animals. Proximate composition was determined using the official methods of analyses; the fatty acid profile was determined by gas chromatography, total phenolic content (TPC) and the scavenging activity (DPPH and ABTS•+) by the colorimetric method, and N-trans-Caffeoyltyramine content by HPLC analysis. The hemp seed Enectarol showed the highest total lipid content and the best antioxidant activity with the highest TPC, N-trans-Caffeoyltyramine content, and ABTS•+, and the lowest peroxidation index and DPPHCarmaenecta showed the best fatty acid profile and nutritional indices (atherogenic and thrombogenic indices and hypocholesterolemic/hypercholesterolemic ratio), and Enectaliana showed the highest crude protein and dietary fiber content. The differences observed in the chemical composition, fatty acid profile and antioxidant activity are because of the varieties, considering that all other growing conditions were the same. The results obtained suggest that hemp seed can be used as a source of lipid and protein in animal diets due to their valuable antioxidant activity and as a rich source of essential fatty acids.”

https://pubmed.ncbi.nlm.nih.gov/39335288/

“(Cannabis sativa L.), due to its distinctive nutritional profile, can be considered an interesting and promising alternative resource for agriculture in human and animal nutrition.

In conclusion, the results highlight that hemp seeds can be used in the food industry as a source of oil and protein and as a supplement in feed mixtures for the valuable antioxidant activity and fatty acid profile, promoting better health in farm animals.”

https://www.mdpi.com/2076-2615/14/18/2699

Cannabidiol Alleviates Imiquimod-Induced Psoriasis by Inhibiting JAK2-STAT3 in a Mouse Model

pubmed logo

“Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown efficacy in treating psoriasis, a chronic inflammatory skin disease affecting 1-3% of the global population; however, the mechanisms remain unclear.

This study investigated CBD’s effects on imiquimod (IMQ)-induced psoriasis in mice, which were divided into five groups: Control, IMQ, Clobetasol, 0.01% CBD, and 0.1% CBD. After inducing psoriasis with IMQ, clobetasol or CBD was applied. Psoriasis severity was assessed using the Psoriasis Area and Severity Index (PASI), with histopathological changes examined via hematoxylin and eosin staining. Gene expression of inflammatory markers (Il1bIl6Il12bIl17aIl22, and Tnf) was analyzed by RT-PCR, while protein levels of signal transducer and activator of transcription (STAT)3, P-STAT3, Janus kinase (JAK)2, and JAK3 were evaluated through western blot and immunohistochemistry.

The results demonstrated that CBD significantly reduced PASI scores, epidermal thickness, keratosis, hyperproliferation, and inflammation. Moreover, CBD inhibited the IL-23 receptor-mediated JAK2-STAT3 signaling pathway, leading to the downregulation of Il1bIl6Il12bIl17aIl22, and Tnf expression.

These findings suggest that CBD effectively alleviates psoriasis-like symptoms in mice and may serve as a promising therapeutic agent for psoriasis by targeting the JAK2-STAT3 pathway.”

https://pubmed.ncbi.nlm.nih.gov/39335596/

“Our results showed that CBD treatment markedly alleviated psoriasis symptoms in an IMQ-induced mouse model by targeting the JAK2–STAT3 signaling pathway. Therefore, CBD may have beneficial effects in treating psoriasis.”

https://www.mdpi.com/2227-9059/12/9/2084

Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges

pubmed logo

“For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition.

Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms.

A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer.

Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids’ efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain.

Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.”

https://pubmed.ncbi.nlm.nih.gov/39331301/

https://link.springer.com/article/10.1007/s12672-024-01356-8

Cannabis-Containing Cream for CKD-Associated Pruritus: A Double-Blind, Placebo Controlled Trial

pubmed logo

“Rationale & objective: This study aims to compare the efficacy of a cannabis cream and a placebo in the treatment of chronic kidney disease (CKD)-associated pruritus.

Study design: A double-blind randomized controlled study.

Setting & participants: Sixty hemodialysis patients with the worst itching intensity numerical rating scale (WI-NRS) ≥3.

Exposure: Patients received cannabis cream or placebo.

Outcomes: The primary endpoint was the WI-NRS score at week 4. The secondary endpoints included the WI-NRS at week 2, the Skindex-10 score at weeks 2 and 4, and the mean difference score between baseline and week 4 for the WI-NRS and the Skindex-10 score.

Analytical approach: We used unpaired t tests or Mann Whitney U tests, along with χ2 or Fisher exact tests as appropriate. The adjusted mean differences were determined using ANCOVA, adjusting for baseline scores.

Results: Among 60 participants, the mean age was 61.6 ± 14.4 years and the mean baseline WI-NRS was 6.7 ± 1.7. The placebo and cannabis cream groups were similar at baseline, although more individuals in the placebo group had diabetes. At 4 weeks, the WI-NRS dropped to 2.6 in the cannabis group and 3.6 in the placebo group (the mean difference after adjustment for baseline scores:-1.1, 95% CI, -2.1 to -0.2; P = 0.02). Skindex-10 scores at week 4 were also lower in the cannabis group, but after adjustment for baseline scores, statistical significance was not maintained. No side effects were observed in either group.

Limitations: A single study with a small sample size restricts its generalizability. Variances in participants’ diabetes statuses might have affected the itch outcomes. The absence of cannabinoid level assessment in blood prevents conclusive determination of the potential systemic impacts. A 4-week follow-up period inadequately captures long-term effect.

Conclusions: In CKD-associated pruritus, the topical cream containing cannabis significantly reduced the severity of itching symptoms compared to the placebo.”

https://pubmed.ncbi.nlm.nih.gov/39328960/

https://www.kidneymedicinejournal.org/article/S2590-0595(24)00105-5/fulltext