Editorial: The CB2 Cannabinoid System: A New Strategy in Neurodegenerative Disorder and Neuroinflammation

Image result for frontiers in neuroscience

“The cannabinoid receptors subtype 2 (CB2R) are emerging as novel targets for the development of new therapeutic approaches and PET probes useful to early diagnose neuroinflammation as first step in several neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson disease (PD).

This Research Topic is mainly focused on the involvment of CB2R in neurodegenerative disorders and on the usefulness of CB2R ligands in the therapy and early diagnosis of neuroinflammation as onset of neurodegeneration.

In the reviews of Aso and Ferrer and Cassano et al. an interesting and exaustive overview of the endogenous cannabinoid signaling and its role in neuroinflammation and neurogenesis is reported. The potential of CB2R as therapeutic target in AD is argued by several evidences derived by robust experimental models and the effects modulated by CB2R agonists on different pathways involved in the pathogenesis of AD are discussed; indeed, these ligands are able to reduce inflammation, Aβ production and deposition, tau protein hyper-phosphorylation and oxidative stress damage caused by Aβ peptides. CB2R agonists are also able to induce Aβ clearance leading to cognitive improvement in AD models.

In conclusion, considering that neuroinflammation has been widely reported as indicator and modulator of neurodegeneration, the reduction of the neuroinflammatory responses could be considered as a new therapeutic strategy in these diseases. Moreover, the selective CB2R overexpression on the activated-microglial cells provides also a highly specialized target useful to an early diagnosis of the neurodegenerative diseases.”

http://journal.frontiersin.org/article/10.3389/fnins.2017.00196/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CB1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways.

Image result for FASEB J.

“Endocannabinoids have been recognized as mediators of practically all reproductive events in mammals. However, little is known about the role of this system in oocyte maturation.

In a mouse model, we observed that activation of the cannabinoid receptor (CB)1during in vitro oocyte maturation modulated the phosphorylation status of Akt and ERK1/2 and enhanced the subsequent embryo production. In the absence of the CB1 receptor, in vivo oocyte maturation was impaired and embryo development delayed. The CB2receptor was unable to rescue these effects. Finally, we confirmed abnormal oocyte maturation rather than impaired embryonic transport through the oviduct in CB1 knockouts.

Our data suggest that cannabinoid agonists may be useful in vitro maturation supplements. For in vitro fertilization patients intolerant to gonadotropins, this could be a promising and only option.”

https://www.ncbi.nlm.nih.gov/pubmed/28428264

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical Marijuana Laws May Be Associated With A Decline In The Number Of Prescriptions For Medicaid Enrollees

Current Issue

“In the past twenty years, twenty-eight states and the District of Columbia have passed some form of medical marijuana law. Using quarterly data on all fee-for-service Medicaid prescriptions in the period 2007–14, we tested the association between those laws and the average number of prescriptions filled by Medicaid beneficiaries. We found that the use of prescription drugs in fee-for-service Medicaid was lower in states with medical marijuana laws than in states without such laws in five of the nine broad clinical areas we studied. If all states had had a medical marijuana law in 2014, we estimated that total savings for fee-for-service Medicaid could have been $1.01 billion. These results are similar to those in a previous study we conducted, regarding the effects of medical marijuana laws on the number of prescriptions within the Medicare population. Together, the studies suggest that in states with such laws, Medicaid and Medicare beneficiaries will fill fewer prescriptions.” http://content.healthaffairs.org/content/early/2017/04/13/hlthaff.2016.1135

“Medical Marijuana Laws Reduce Prescription Medication Use In Medicare Part D”  http://content.healthaffairs.org/content/35/7/1230

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions.

 Image result for Rev Physiol Biochem Pharmacol.

“Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids.

In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment.

For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system.

Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment.

This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28425013

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The role of cannabinoids in dermatology

Image result for JAAD

“Twenty-eight states currently allow for comprehensive public medical cannabis programs, and this number continues to grow.  Approximately 1 in 10 adult cannabis users in the United States use it for medical purposes. Numerous studies have investigated its uses for chronic pain, spasticity, anorexia, and nausea. In recent years, researchers have also investigated its use for the treatment of dermatologic conditions including pruritus, inflammatory skin disease, and skin cancer.”

http://www.jaad.org/article/S0190-9622(17)30308-0/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neurological aspects of medical use of cannabidiol.

Image result for CNS Neurol Disord Drug Targets.

“Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions. CBD neuroprotection is due to its antioxidant and antiinflammatory activi-ties and the modulation of a large number of brain biological targets (receptors, channels) involved in the development and maintenance of neurodegenerative diseases.

OBJECTIVE:

Aim of the present review was to describe the state of art about the pre-clinical research, the potential use and, when existing, the clinical evidence related to CBD in the neurological field.

RESULTS:

Laboratory and clinical studies on the potential role of CBD in Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), Huntington’s disease (HD), amyotrophic lateral sclerosis ALS), cerebral ischemia, were examined.

CONCLUSIONS:

Pre-clinical evidence largely shows that CBD can produce beneficial effects in AD, PD and MS patients, but its employment for these disorders needs further confirmation from well designed clinical studies. CBD pre-clinical demonstration of antiepileptic activity is supported by recent clinical studies in human epileptic subjects resistant to standard antiepileptic drugs showing its potential use in children and young adults affected by refractory epilepsy. Evidence for use of CBD in PD is still not supported by sufficient data whereas only a few studies including a small number of patients are available.”

https://www.ncbi.nlm.nih.gov/pubmed/28412918

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anandamide and 2-AG Are Endogenously Present within the Laterodorsal Tegmental Nucleus: Functional Implications for a role of eCBs in arousal.

Image result for Brain Research journal

“Previously, we presented electrophysiological evidence for presence in mice brain slices of functional cannabinoid type I receptors (CB1Rs) within the laterodorsal tegmentum (LDT), a brain stem nucleus critical in control of arousal and rapid eye movement (REM) sleep. Further, using pharmacological agents, we provided data suggestive of the endogenous presence of cannabinoids (CBs) acting at LDT CB1Rs. However, in those studies, we were unable to identify the type(s) of CB ligands endogenously present in the LDT, and this information has not been provided elsewhere. Accordingly, we used the highly-sensitive liquid chromatography/mass spectrometry (LC-MS) method to determine whether N-arachidonoylethanolamide (Anandamide or AEA) and 2-arachidonyl glycerol (2-AG), which are both endogenous CB ligands acting at CB1Rs, are present in the LDT. Mice brain tissue samples of the LDT were assayed using ion trap LC-MS in selected ion monitoring mode. Chromatographic analysis and product-ion MS scans identified presence of the CBs, AEA and 2-AG, from LDT mouse tissue. Data using the LC-MS method show that AEA and 2-AG are endogenously present within the LDT and when coupled with our electrophysiological findings, lead to the suggestion that AEA and 2-AG act at electropharmacologically-demonstrated CB1Rs in this nucleus. Accordingly, AEA and 2-AG likely play a role in processes governed by the LDT, including control of states of cortical gamma band activity seen in alert, aroused states, as well as cortical and motor activity characteristic of REM sleep.”

https://www.ncbi.nlm.nih.gov/pubmed/28404451

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Individual prolactin reactivity modulates response of nucleus accumbens to erotic stimuli during acute cannabis intoxication: an fMRI pilot study.

Image result for Psychopharmacology (Berl).

“Self-report studies indicate that cannabis could increase sexual desire in some users.

We hypothesized that intoxication increases activation of brain areas responsive to visual erotica, which could be useful in the treatment of hypoactive sexual desire disorder, a condition marked by a lack of sexual desire.

The aim of this study is to assess the aphrodisiacal properties of cannabis.

Cannabis intoxication increases activation of the right nucleus accumbens to erotic stimuli. This effect is limited to users whose prolactin is not elevated in response to intoxication.   This effect may be useful in the treatment of low sexual desire.”

https://www.ncbi.nlm.nih.gov/pubmed/28401285

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis ‘mimics love hormone in the brain’, study finds – marking new research possibilities for autism

Cannabis behaves like the human 'love hormone'

“Cannabis has a reputation for inducing feelings of peace and love – and now scientists claim they have found the reason why.

A new study reveals the illegal drug acts much in the same way as chemicals produced by the natural ‘love hormone’ oxytocin, which is known to boost emotional feelings and bonding towards romantic partners, between mothers and babies and friends.

The research, conducted on mice, found that higher levels of oxytocin led to the release of anandamide – which behaves very similarly in the brain to the psychoactive ingredient in cannabis, THC.

Both chemicals attach to the same brain cell receptors, producing a similar ‘high’.

As part of the study, the researchers found that blocking anandamide reduced the pro-social effects of oxytocin – while a drug which preserved anandamide in the mice’s brains seemed to make them happier around other mice than other, untreated, animals.

Scientists say the results could highlight new paths for research in the treatment of autism, for which symptoms often include difficulty socialising.

It is very difficult to directly deliver oxytocin to the brain, however.

Dr Daniele Piomelli, of the Italian Institute of Technology in Genoa, Italy, said another strategy could be to intervene further down the oxytocin-anandamide pathway.

Our findings open the exciting possibility that drugs that block the degradation of anandamide, which are currently being tested for various anxiety disorders, could give a boost to the brain’s own oxytocin and help people with autism socialise more.

– DR DANIELE PIOMELLI, RESEARCHER

The findings were published in the journal Proceedings of the National Academy of Sciences.”

http://www.itv.com/news/2015-10-27/cannabis-mimics-love-hormone-in-the-brain-study-finds/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Enhancement of Anandamide-Mediated Endocannabinoid Signaling Corrects Autism-Related Social Impairment

Mary Ann Liebert, Inc. publishers

We recently uncovered a signaling mechanism by which the endocannabinoid anandamide mediates the action of oxytocin, a neuropeptide that is crucial for social behavior, to control social reward. Oxytocin signaling has been implicated in autism spectrum disorder (ASD), and social reward is a key aspect of social functioning that is thought to be disrupted in ASD. Therefore, as a proof of principle for the core component of ASD—social impairment—we tested an endocannabinoid-enhancing compound on two widely studied mouse models of ASD, the BTBR and fmr1−/− (model of Fragile X Syndrome).

Remarkably, we found that FAAH blockade completely reversed the social impairment in both mouse models. CB1 receptor blockade prevented the prosocial action of FAAH inhibition in BTBR mice.

The results suggest that increasing anandamide activity at CB1 receptors improves ASD-related social impairment and identify FAAH as a novel therapeutic target for ASD.

In conclusion, the present study provides new insights into the role of endocannabinoid signaling in social behavior and validates FAAH as a novel therapeutic target for the social impairment of ASD.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous