Medicinal cannabis in neurodegenerative disorders: an open label, dose finding, safety and efficacy study

pubmed logo

“Aim: Currently, there exist no curative treatments for neurodegenerative disorders. Recently, there has been a resurgence of interest in the use of medicinal cannabis to improve neurological conditions. 

Methods: A 12-month, open label, dose-finding, safety and efficacy study was conducted including 48 subjects with a variety of neurodegenerative disorders. 

Results: In our participants, we observed a reduction in pain, improved sleep, enhanced well-being and less agitation. 

Conclusion: Our findings suggest that medicinal cannabis might be useful in patients with neurodegenerative disorders in controlling pain, enhancing sleep, reducing difficult behaviors, controlling unusual and complex symptoms when other treatments have failed – this offers medicinal cannabis a role in palliation.”

Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson’s disease and in comorbidity with psychiatric disorders

pubmed logo

“Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson’s diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson’s disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.”

Protective effect of phenylpropionamides in the seed of Cannabis Sativa L. on Parkinson’s disease through autophagy

pubmed logo

“Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world. As one of the major degradation pathways, autophagy plays a pivotal role in maintaining the effective turnover of proteins and damaged organelles in cells. Lewy bodies composed of α-synuclein (α-syn) abnormally aggregated in the substantia nigra are important pathological features of PD, and autophagy dysfunction is considered to be an important factor leading to abnormal aggregation of α-syn.

Phenylpropionamides (PHS) in the seed of Cannabis sativa L. have a protective effect on neuroinflammation and antioxidant activity. However, the therapeutic role of PHS in PD is unclear. In this study, the seeds of Cannabis sativa L. were extracted under reflux with 60% EtOH-H2O, and the 60% EtOH-H2O elution fraction was identified as PHS with the UPLC-QTOF-MS. The 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice was used for behavioral and pharmacodynamic experiments.

Behavioral symptoms were improved, Nissl-stained and TH-positive neurons in the substantia nigra were significantly increased in PHS-treated MPTP-induced PD model mice. Compared with the model group, PHS treatment reduced the expression level of α-syn, and the expression of TH increased significantly by western blotting, compared with the model group, the PHS group suppressed Caspase 3 and Bax expression and promoted Bcl-2 expression and levels of p62 decreased significantly, the ratio of LC3-II/I and p-mTOR/mTOR in the PHS group had a downward trend, suggesting that the therapeutic effect of PHS on MPTP-induced PD model mice may be triggered by the regulation of autophagy.”

“In summary, we found that the PHS from the seed of Cannabis sativa L. can protect MPTP-induced neurotoxicity in model mice, and the mechanism may be related to regulating α-synuclein activity and promoting autophagy, which provides a new strategy for the treatment of Parkinson’s disease.”

Research progress on the cannabinoid type-2 receptor and Parkinson’s disease

pubmed logo

“Parkinson’s disease (PD) is featured by movement impairments, including tremors, bradykinesia, muscle stiffness, and imbalance. PD is also associated with many non-motor symptoms, such as cognitive impairments, dementia, and mental disorders. Previous studies identify the associations between PD progression and factors such as α-synuclein aggregation, mitochondrial dysfunction, inflammation, and cell death.

The cannabinoid type-2 receptor (CB2 receptor) is a transmembrane G-protein-coupled receptor and has been extensively studied as part of the endocannabinoid system. CB2 receptor is recently emerged as a promising target for anti-inflammatory treatment for neurodegenerative diseases.

It is reported to modulate mitochondrial function, oxidative stress, iron transport, and neuroinflammation that contribute to neuronal cell death. Additionally, CB2 receptor possesses the potential to provide feedback on electrophysiological processes, offering new possibilities for PD treatment. This review summarized the mechanisms underlying PD pathogenesis. We also discussed the potential regulatory role played by CB2 receptor in PD.”

“Cannabinoids, as an emerging therapeutic agent, have attracted wide attention for their great potential in the treatment of various diseases.”

Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L

pubmed logo

“Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases.

Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation.

We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from ‘Gorilla Glue’ was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils’ anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described.

In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.”

Characterizing cannabis-prevalent terpenes for neuroprotection reveal a role for α and β-pinenes in mitigating amyloid β-evoked neurotoxicity and aggregation in vitro

pubmed logo

Background: Cannabis Sativa L. (C. sativa) can efficiently synthesize of over 200 terpenes, including monoterpenes, sesquiterpenes and triterpenes that may contribute to the known biological activities of phytocannabinoids of relevance for the burgeoning access to medicinal cannabis formulations globally; however, to date have been uncharacterized. We assessed twelve predominant terpenes in C. sativa for neuroprotective and anti-aggregative properties in semi-differentiated PC12 neuronal cell line that is robust and validated as a cell model responsive to amyloid β (Aβ1-42) protein exposure and oxidative stress.

Methods: Cell viability was assessed biochemically using the MTT assay in the presence of myrcene, β-caryophyllene, terpinolene, limonene, linalool, humulene, α-pinene, nerolidol, β-pinene, terpineol, citronellol and friedelin (1-200μM) for 24hr. Sub-toxic threshold test concentrations of each terpene were then applied to cells, alone or with concomitant incubation with the lipid peroxidant tert-butyl hyrdroperoxide (t-BHP; 0-250μM) or amyloid β (Aβ1-42; 0-1μM) to assess neuroprotective effects. Direct effects of each terpene on Aβ fibril formation and aggregation were also evaluated using the Thioflavin T (ThT) fluorometric kinetic assay and transmission electron microscopy (TEM) to visualize fibril and aggregate morphology

Results: Terpenes were intrinsically benign to PC12 cells up to 50μM, with higher concentrations of β-caryophyllene, humulene and nerolidol inducing some loss of PC12 cell viability. No significant protective effects of terpenes were observed following t-BHP (0-200µM) administration, with some enhanced toxicity instead demonstrated from both β-caryophyllene and humulene treatment (each at 50µM). α-pinene and β-pinene demonstrated a significant neuroprotective effect against amyloid β exposure. α-pinene, β-pinene, terpineol, terpinolene and friedelin were associated with a variable inhibition of Aβ1-42 fibril and aggregate density.

Conclusions: The outcomes of this study underline a neuroprotective role of α-pinene and β-pinene against Aβ-mediated neurotoxicity associated with an inhibition of Aβ1-42 fibrilization and density. This demonstrates the bioactive potential of selected terpenes for consideration in the development of medicinal cannabis formulations targeting neurodegenerative diseases.”

“In summary, the outcomes from this study reveal a novel and efficacious neuroprotective and anti-aggregatory effect of α-pinene and β-pinene against β amyloid-mediated toxicity. The modest inhibition of lipid peroxidation from α-pinene, β-pinene, and terpinolene may also contribute to the multifaceted neuroprotection of C. sativa-prevalent terpenes. In addition, limited anti-aggregatory effects were observed from terpineol, terpinolene, α-pinene, β-pinene and friedelin. The outcomes of this study contribute to an emerging body of knowledge towards the potential synergistic bioactivities of selected terpenes for consideration in the development of medicinal cannabis formulations targeting neurodegenerative diseases.”

Cannabinoids and endocannabinoids as therapeutics for nervous system disorders: preclinical models and clinical studies

pubmed logo

“Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body. They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases.

Some of these include central nervous system (CNS) diseases and dysfunctions such as forms of epilepsy, multiple sclerosis, Parkinson’s disease, pain and neuropsychiatric disorders. In addition, the endogenously produced cannabinoid lipids, endocannabinoids, are critical for normal CNS function, and if controlled or modified, may represent an additional therapeutic avenue for CNS diseases. This review discusses in vitro cellular, ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies. In addition, the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases.

Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.”

Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy

pubmed logo

“In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.”

Cannabidiol and Tetrahydrocannabinol Use in Parkinson’s Disease: An Observational Pilot Study

pubmed logo

“Background: There is a need for more research examining the use of cannabis, tetrahydrocannabinol (THC), and cannabidiol (CBD) products in people with Parkinson’s disease (PD), especially given the recent increase in the use of these products.

Objectives: Given the recent increase in over-the-counter CBD use as well as the prescription of medical cannabis by treating physicians, the utilization method, effects on motor and non-motor symptoms, side effects, and attitude toward cannabis use were examined in a naturalistic sample of patients with PD.

Methods: A total of 15 individuals with PD, eight of whom were prescribed CBD/THC treatment and seven who were not taking any CBD/THC product, were assessed cross-sectionally. Participants completed structured neuropsychological testing, motor assessment, and questionnaires regarding mood, subjective cognition, and symptom levels. T-tests were completed for quantitative measures and descriptive data were examined and described. Due to the small sample size, Shapiro-Wilk tests for normality were utilized and Mann-Whitney U analyses were completed when appropriate.

Results: We found a wide range of prescribed products and methods as well as variability in perceived benefits and untoward effects, even in our small sample. Individuals with PD who were taking a CBD/THC product had lower global cognition scores on the Montreal Cognitive Assessment (MoCA) but no detectable differences among more specific neuropsychological measures. They also had more non-motor symptoms of PD but no differences in motor symptom levels. Qualitatively, some participants with PD who were taking CBD/THC reported improved pain levels, sleep, and reductions in anxiety. A few negative effects were endorsed, including sleepiness, concentration difficulties, and forgetfulness.

Conclusion: CBD/THC utilization in PD is varied. In our small sample, individuals who utilized the treatment had lower MoCA scores, more non-motor symptoms, and descriptively reported improvements in sleep, anxiety, and pain, and had side effects of sleepiness and cognitive difficulty. Future studies should focus on clinical trials with standardized CBD/THC methods of use.”!/

A Phase Ib, Double Blind, Randomized Study of Cannabis Oil for Pain in Parkinson’s Disease

pubmed logo

“Background: Pain is common in Parkinson’s disease (PD), but effective therapies are limited.

Objectives: To determine the maximum tolerated dose (MTD) and safety of formulations of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) for pain in PD.

Methods: In this phase 1b, double-blind, randomized, single-center study, participants were randomized to three formulations of THC/CBD (18:0, 10:10, and 1:20). The MTD, adverse events (AE), and tolerability are described for each formulation.

Results: Eight participants were randomized. The MTD was similar among groups (0.8-0.9 mL/daily), and there were no serious AE or study drop-outs. The most common AE were drowsiness and dizziness (three participants). Epworth sleepiness scale scores were higher in the high CBD formulation (1:20).

Conclusions: In patients with pain and PD, mixed formulations of THC/CBD were tolerated with no serious AE. Considering the safety profile, future phase II studies should be considered.”