The Role of Cannabidiol in Liver Disease: A Systemic Review

pubmed logo

“Cannabidiol (CBD), a non-psychoactive phytocannabinoid abundant in Cannabis sativa, has gained considerable attention for its anti-inflammatory, antioxidant, analgesic, and neuroprotective properties. It exhibits the potential to prevent or slow the progression of various diseases, ranging from malignant tumors and viral infections to neurodegenerative disorders and ischemic diseases.

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral hepatitis stand as prominent causes of morbidity and mortality in chronic liver diseases globally. The literature has substantiated CBD’s potential therapeutic effects across diverse liver diseases in in vivo and in vitro models. However, the precise mechanism of action remains elusive, and an absence of evidence hinders its translation into clinical practice.

This comprehensive review emphasizes the wealth of data linking CBD to liver diseases. Importantly, we delve into a detailed discussion of the receptors through which CBD might exert its effects, including cannabinoid receptors, CB1 and CB2, peroxisome proliferator-activated receptors (PPARs), G protein-coupled receptor 55 (GPR55), transient receptor potential channels (TRPs), and their intricate connections with liver diseases. In conclusion, we address new questions that warrant further investigation in this evolving field.”

https://pubmed.ncbi.nlm.nih.gov/38397045/

https://www.mdpi.com/1422-0067/25/4/2370

Effectiveness of cannabidiol (CBD) on histopathological changes and gene expression in hepatocellular carcinoma (HCC) model in male rats: the role of Hedgehog (Hh) signaling pathway

pubmed logo

“The third most prevalent malignancy to cause mortality is hepatocellular carcinoma (HCC). The Hedgehog (Hh) signaling pathway is activated by binding to the transmembrane receptor Patched-1 (PTCH-1), which depresses the transmembrane G protein-coupled receptor Smoothened (SMO).

This study was performed to examine the preventative and therapeutic effects of cannabidiol in adult rats exposed to diethyl nitrosamine (DENA)-induced HCC.

A total of 50 male rats were divided into five groups of 10 rats each. Group I was the control group. Group II received intraperitoneal (IP) injections of DENA for 14 weeks. Group III included rats that received cannabidiol (CBD) orally (3-30 mg/kg) for 2 weeks and DENA injections for 14 weeks. Group IV rats received oral CBD for 2 weeks before 14 weeks of DENA injections. Group V included rats that received CBD orally for 2 weeks after their last injection of DENA. Measurements were made for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and alpha fetoprotein (AFP). Following total RNA extraction, Smo, Hhip, Ptch-1, and Gli-1 expressions were measured using quantitative real-time polymerase chain reaction (qRT-PCR). A histopathological analysis of liver tissues was performed.

The liver enzymes, oxidant-antioxidant state, morphological, and molecular parameters of the adult male rat model of DENA-induced HCC showed a beneficial improvement after CBD administration.

In conclusion, by focusing on the Hh signaling system, administration of CBD showed a beneficial improvement in the liver enzymes, oxidant-antioxidant status, morphological, and molecular parameters in the DENA-induced HCC in adult male rats.”

https://pubmed.ncbi.nlm.nih.gov/38296878/

https://link.springer.com/article/10.1007/s00418-023-02262-w

How Does CBG Administration Affect Sphingolipid Deposition in the Liver of Insulin-Resistant Rats?

pubmed logo

“Background: Cannabigerol (CBG), a non-psychotropic phytocannabinoid found in Cannabis sativa plants, has been the focus of recent studies due to its potential therapeutic properties. We proposed that by focusing on sphingolipid metabolism, which plays a critical role in insulin signaling and the development of insulin resistance, CBG may provide a novel therapeutic approach for metabolic disorders, particularly insulin resistance.

Methods: In a rat model of insulin resistance induced by a high-fat, high-sucrose diet (HFHS), we aimed to elucidate the effect of intragastrically administered CBG on hepatic sphingolipid deposition and metabolism. Moreover, we also elucidated the expression of sphingolipid transporters and changes in the sphingolipid concentration in the plasma.

Results: The results, surprisingly, showed a lack of changes in de novo ceramide synthesis pathway enzymes and significant enhancement in the expression of enzymes involved in ceramide catabolism, which was confirmed by changes in hepatic sphingomyelin, sphinganine, sphingosine-1-phosphate, and sphinganine-1-phosphate concentrations.

Conclusions: The results suggest that CBG treatment may modulate sphingolipid metabolism in the liver and plasma, potentially protecting the liver against the development of metabolic disorders such as insulin resistance.”

https://pubmed.ncbi.nlm.nih.gov/37892425/

https://www.mdpi.com/2072-6643/15/20/4350

Effects of Full-Spectrum Cannabis Oil with a Cannabidiol:Tetrahydrocannabinol 2:1 Ratio on the Mechanisms Involved in Hepatic Steatosis and Oxidative Stress in Rats Fed a Sucrose-Rich Diet

pubmed logo

“Introduction: This study aimed to analyze the effects of cannabis oil (cannabidiol:tetrahydrocannabinol [CBD:THC], 2:1 ratio) on the mechanisms involved in hepatic steatosis and oxidative stress in an experimental model of metabolic syndrome (MS) induced by a sucrose-rich diet (SRD). We hypothesized that noninvasive oral cannabis oil administration improves hepatic steatosis through a lower activity of lipogenic enzymes and an increase in carnitine palmitoyltransferase-1 (CPT-1) enzyme activity involved in the mitochondrial oxidation of fatty acids. Furthermore, cannabis oil ameliorates liver oxidative stress through the regulation of the main regulatory factors involved, nuclear factor erythroid 2 (NrF2) and nuclear factor-kB (NF-κB) p65. For testing this hypothesize, a relevant experimental model of MS was induced by feeding rats with a SRD for 3 weeks.

Methods: Male Wistar rats were fed the following diets for 3 weeks: reference diet: standard commercial laboratory diet, SRD, and SRD + cannabis oil: noninvasive oral administration of 1 mg/kg body weight cannabis oil daily. The full-spectrum cannabis oil presents a total cannabinoid CBD:THC 2:1 ratio. Serum glucose, triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol, uric acid, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase (AP), N-arachidonoylethanolamine or anandamide and 2-arachidonoylglycerol endocannabinoids levels, thiobarbituric acid reactive substance (TBARS) levels, and non-enzymatic antioxidant capacity (ferric ion-reducing antioxidant power [FRAP]) were evaluated. In the liver tissue: histology, nonalcoholic fatty liver disease activity score (NAS), triglycerides and cholesterol content, lipogenic enzyme activities (fatty acid synthase, acetyl-CoA carboxylase, malic enzyme, and glucose-6-phosphate dehydrogenase), enzyme related to mitochondrial fatty acid oxidation (CPT-1), reactive oxygen species, TBARS, FRAP, glutathione, catalase, glutathione peroxidase, and glutathione reductase enzyme activities. 4-hydroxynonenal, NrF2, and NF-κB p65 levels were analyzed by immunohistochemistry.

Results: The results showed that SRD-fed rats developed dyslipidemia, liver damage, hepatic steatosis (increase of key enzymes related to the novo fatty acid synthesis and decrease of key enzyme related to mitochondrial fatty acid oxidation), lipid peroxidation, and oxidative stress. Hepatic NrF2 expression was significantly decreased and NF-κB p65 expression was increased. Cannabis oil administration improved dyslipidemia, liver damage, hepatic steatosis, lipid peroxidation (improving enzymes involved in lipid metabolism), and oxidative stress. In the liver tissue, NrF2 expression increased, and NF-κB p65 expression was reduced.

Conclusion: The present study revealed new aspects of liver damage and steatosis, lipid peroxidation, and oxidative stress in dyslipidemic insulin-resistant SRD-fed rats. We demonstrated new properties and molecular mechanisms of cannabis oil (CBD:THC, 2:1 ratio) on lipotoxicity and hepatic oxidative stress in an experimental model of MS.”

https://pubmed.ncbi.nlm.nih.gov/38023489/

“our results suggest that full-spectrum cannabis oil with a CBD:THC 2:1 ratio may serve as a natural nutraceutical agent to prevent metabolic disorders related to hepatic steatosis, oxidative stress, and NASH. We cannot rule out the possibility that other components of cannabis oil, such as terpenes, flavonoids, and alkaloids, may also contribute to the beneficial effects found in the present study.”

https://karger.com/mca/article/6/1/170/869880/Effects-of-Full-Spectrum-Cannabis-Oil-with-a


Cannabidiol protects the liver from α-Amanitin-induced apoptosis and oxidative stress through the regulation of Nrf2

pubmed logo

“α-Amanitin, the primary lethal toxin of Amanita, specifically targets the liver, causing oxidative stress, hepatocyte apoptosis, and irreversible liver damage. As little as 0.1 mg/kg of α-amanitin can be lethal for humans, and there is currently no effective antidote for α-amanitin poisoning. Cannabidiol is a non-psychoactive natural compound derived from Cannabis sativa that exhibits a wide range of anti-inflammatory, antioxidant, and anti-apoptotic effects. It may play a protective role in preventing liver damage induced by α-amanitin. To investigate the potential protective effects of cannabidiol on α-amanitin-induced hepatocyte apoptosis and oxidative stress, we established α-amanitin exposure models using C57BL/6J mice and L-02 cells in vitro. Our results showed that α-amanitin exposure led to oxidative stress, apoptosis, and DNA damage in both mouse hepatocytes and L-02 cells, resulting in the death of mice. We also found that cannabidiol upregulated the level of Nrf2 and antioxidant enzymes, alleviating apoptosis, and oxidative stress in mouse hepatocytes and L-02 cells and increasing the survival rate of mice. Our findings suggest that cannabidiol has hepatoprotective effects through the regulation of Nrf2 and antioxidant enzymes and may be a potential therapeutic drug for Amanita poisoning.”

https://pubmed.ncbi.nlm.nih.gov/37992955/

https://www.sciencedirect.com/science/article/abs/pii/S0278691523005987?via%3Dihub

Protective Actions of Cannabidiol on Aging-Related Inflammation, Oxidative Stress and Apoptosis Alterations in Liver and Lung of Long Evans Rats

pubmed logo

“Background: Aging is characterised by the progressive accumulation of oxidative damage which leads to inflammation and apoptosis in cells. This affects all tissues in the body causing the deterioration of several organs. Previous studies observed that cannabidiol (CBD) could extend lifespan and health span by its antioxidant, anti-inflammatory and autophagy properties. However, research on the anti-aging effect of CBD is still in the beginning stages. This study aimed to investigate the role of cannabidiol (CBD) in the prevention of age-related alterations in liver and lung using a murine model.

Methods: 15-month-old Long Evans rats were treated with 10 mg/kg b.w./day of CBD for 10 weeks and compared to animals of the same age as old control and 2-month-old animals as young control. Gene and/or protein expressions, by RT-qPCR and Western blotting, respectively, were assessed in terms of molecules related to oxidative stress (GST, GPx, GR and HO-1d), inflammation (NFκB, IL-1β and TNF-α) and apoptosis (BAX, Bcl-2, AIF, and CASP-1). In addition, MDA and MPO levels were measured by colorimetric assay. Results were analysed by ANOVA followed by Tukey-Kramer test, considering statistically significant a p < 0.05.

Results: GST, GPx and GR expressions were significantly reduced (p < 0.01) in liver samples from old animals compared to young ones and CBD treatment was able to revert it. A significant increase was observed in old animals compared to young ones in relation to oxidative stress markers (MDA and HO-1d), proinflammatory molecules (NFκB, IL-1β and TNF-α), MPO levels and proapoptotic molecules (BAX, AIF and CASP-1), while no significant alterations were observed in the antiapoptotic molecules (Bcl-2). All these changes were more noticeable in the liver, while the lung seemed to be less affected. In almost all the measured parameters, CBD treatment was able to revert the alterations caused by age restoring the levels to those observed in the group of young animals.

Conclusions: Chronic treatment with CBD in 15-month-old rats showed beneficial effects in lung and more significantly in liver by reducing the levels of inflammatory, oxidative and apoptotic mediators, and hence the cell damage associated with these three processes inherent to aging.”

https://pubmed.ncbi.nlm.nih.gov/37891916/

“This study’s results suggest that chronic treatment with CBD in 15-month-old rats could have beneficial effects in the lung and more significantly in the liver by reducing the levels of inflammatory, oxidative, and apoptotic mediators, and hence the cell damage associated with these three processes inherent to aging.”

https://www.mdpi.com/2076-3921/12/10/1837

Cannabidiol alleviates perfluorooctane sulfonate-induced macrophage extracellular trap mediate inflammation and fibrosis in mice liver

pubmed logo

“As a new type of persistent organic pollutant, perfluorooctane sulphonate (PFOS) has received extensive attention worldwide. Cannabidiol (CBD) is a non-psychoactive natural cannabinoid extract that has been proved to have antioxidation, regulation of inflammation and other functions. However, the effects of PFOS on liver injury and whether CBD can alleviate PFOS-induced liver injury are still unclear. Therefore, in this study, we used CBD (10 mg/kg) and/or PFOS (5 mg/kg) to intraperitoneally inject mice for 30 days. We found that PFOS exposure led to inflammatory infiltration in the liver of mice, increased the formation of macrophage extracellular trap (MET), and promoted fibrosis. In vitro, we established a coculture system of RAW264.7, AML12 and LX-2 cells, and treated them with CBD (10 μM) and/or PFOS (200 μM). The results showed that PFOS could also induce the expression of MET, inflammation and fibrosis marker genes in vitro. Coiled-coil domain containing protein 25 (CCD25), as a MET-DNA sensor, was used to investigate its ability to regulate inflammation and fibrosis, we knocked down CCDC25 and its downstream proteins (integrin-linked kinase, ILK) by siRNA technology, and used QNZ to inhibit NF-κB pathway. The results showed that the knockdown of CCDC25 and ILK and the inhibition of NF-κB pathway could inhibit MET-induced inflammation and fibrosis marker gene expression. In summary, we found that PFOS-induced MET can promote inflammation and fibrosis through the CCDC25-ILK-NF-κB signaling axis, while the treatment of CBD showed a protective effect, and it is proved by Macromolecular docking that this protective effect is achieved by combining CBD with peptidylarginine deiminase 4 (PAD4) to alleviate the release of MET. Therefore, regulating the formation of MET and the CCDC25-ILK-NF-κB signaling axis is an innovative treatment option that can effectively reduce hepatotoxicity. Our study reveals the mechanism of PFOS-induced hepatotoxicity and provides promising insights into the protective role of CBD in this process.”

https://pubmed.ncbi.nlm.nih.gov/37591127/

“CBD can prevent PFOS induced liver inflammation and fibrosis.”

https://www.sciencedirect.com/science/article/pii/S0147651323008783?via%3Dihub

Cannabis sativa demonstrates anti-hepatocellular carcinoma potentials in animal model: in silico and in vivo studies of the involvement of Akt

pubmed logo

“Background: Targeting protein kinase B (Akt) and its downstream signaling proteins are promising options in designing novel and potent drug candidates against hepatocellular carcinoma (HCC). The present study explores the anti-HCC potentials of Cannabis sativa (C. sativa) extract via the involvement of Akt using both in silico and in vivo animal models of HCC approaches.

Methods: Phytoconstituents of C. sativa extract obtained from Gas Chromatography Mass-spectrometry (GCSM) were docked into the catalytic domain of Akt-2. The Diethylnitrosamine (DEN) model of HCC was treated with C. sativa extract. The effects of C. sativa extract treatments on DEN model of hepatocellular carcinoma were assessed by One-way analysis of variance (ANOVA) of the treated and untreated groups RESULT: The lead phytoconstituents of C. sativa extract, Δ-9-tetrahydrocannabinol (Δ-9-THC) and cannabidiol form stable hydrophobic and hydrogen bond interactions within the catalytic domain of Akt-2. C. sativa extract (15 mg/kg and 30 mg/kg) respectively gives a 3-fold decrease in the activities of liver function enzymes when compared with the positive control (group 2). It also gives a 1.5-fold decrease in hepatic lipid peroxidation and elevates serum antioxidant enzymes’ activities by 1-fold in HCC treated Wistar rats when compared with the positive control (group 2). In an animal model of hepatocellular carcinoma, C. sativa extract significantly downregulated Akt and HIF mRNAs in groups 3, 4, and 5 with 2, 1.5, 2.5-fold decrease relative to group 2. VEGF mRNA was downregulated by 1.5-fold decrease in groups 3-5 when compared to group 2. The expression of XIAP mRNA was downregulated by 1.5, 2, and 1.25-folds in groups 3, 4, and 5 respectively, in comparison with group 2. In comparison to group 2, COX-2 mRNA levels were downregulated by 1.5, 1, and 1-folds in groups 3-5. In groups 3-5, CRP mRNA was downregulated by 2-fold in comparison with group 2. In groups 3-5, p21 mRNA was upregulated by 2, 2.5, and 3-folds, respectively when compared with group 2. It upregulated p53 mRNA by 2.5, 3.5, and 2.5-folds in groups 3-5 in comparison with group 2. It downregulated AFP mRNA by 3.5, 2.5, .2.5-folds in groups 3, 4, and 5 respectively when compared with group 2. Histologic analysis showed that C. sativa extract reduced necrosis and inflammation in HCC.

Conclusion: C. sativa demonstrates anti-hepatocellular carcinoma potentials in an animal model of HCC and with the involvement of Akt. Its anticancer potential is mediated through antiangiogenic, proapoptotic, cycle arrest, and anti-inflammatory mechanisms. In future studies, the mechanisms of anti-HCC effects of Δ-9-tetrahydrocannabinol (Δ-9- THC) and cannabidiol via the PI3K-Akt signaling pathways should be explored.”

https://pubmed.ncbi.nlm.nih.gov/37434213/

“We established that C. sativa demonstrates anti-hepatocellular carcinoma potentials in an animal model of HCC and with the involvement of Akt. THC and cannabidiol form stable hydrophobic and hydrogen bond interactions within the catalytic domain of Akt-2. C. sativa extract reduced the activities of liver function enzymes. It ameliorates lipid peroxidation and increases the antioxidant enzymes’ activities. It shows anti-angiogenic, proapoptotic, and anti-inflammatory effects. It also demonstrates cell cycle arrest. C. sativa extract further demonstrates its anti-HCC effects by moderating necrosis and reduce inflammation in HCC. In future studies, the mechanisms of anti-HCC effects of Δ-9-tetrahydrocannabinol (Δ-9- THC) and cannabidiol via the PI3K-Akt signaling pathways should be explored. Although preclinical trials have demonstrated the clinical efficacy of C. sativa, clinical trials with cancer patients are lacking. It is imperative to review the results of prospective and randomized studies on the use of C. sativa in cancer treatment before drawing any conclusions.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00190-z

The protective effect of cannabinoids against colorectal cancer cachexia through modulation of inflammation and immune responses

Biomedicine & Pharmacotherapy

“Cancer cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, and there are currently no FDA-approved medications. In the present study, upregulation of six cytokines was observed in serum samples from patients with colorectal cancer (CRC) and in mouse models. A negative correlation between the levels of the six cytokines and body mass index in CRC patients was seen. Gene Ontology analysis revealed that these cytokines were involved in regulating T cell proliferation. The infiltration of CD8+ T cells was found to be associated with muscle atrophy in mice with CRC. Adoptive transfer of CD8+ T cells isolated from CRC mice resulted in muscle wasting in recipients.

The Genotype-Tissue Expression database showed that negative correlations between the expression of cachexia markers and cannabinoid receptor 2 (CB2) in human skeletal muscle tissues. Pharmacological treatment with Δ9-tetrahydrocannabinol (Δ9-THC), a selective CB2 agonist or overexpression of CB2 attenuated CRC-associated muscle atrophy. In contrast, knockout of CB2 with a CRISPR/Cas9-based strategy or depletion of CD8+ T cells in CRC mice abolished the Δ9-THC-mediated effects.

This study demonstrates that cannabinoids ameliorate CD8+ T cell infiltration in CRC-associated skeletal muscle atrophy via a CB2-mediated pathway. Serum levels of the six-cytokine signature might serve as a potential biomarker to detect the therapeutic effects of cannabinoids in CRC-associated cachexia.”

https://pubmed.ncbi.nlm.nih.gov/36871538/

“In recent years, researchers have gradually found that marijuana, in addition to recreational use, has potential applications as a supportive therapy or palliative medicine.

In conclusion, our findings indicate that the infiltration of CD8+ T cells in skeletal muscle plays a vital role in CRC-associated muscle atrophy. Treatment with Δ9-THC or CB65 can ameliorate CRC-associated cachexia and muscle atrophy by activating CB2 in CD8+ T cells. Targeting the CB2 receptor in CD8+ T cells should be evaluated as a therapeutic option for CRC patients who develop cachexia, and the six-cytokine signature in serum might serve as a potential biomarker for the therapeutic effects of cannabinoids in CRC-associated cachexia.”

https://www.sciencedirect.com/science/article/pii/S075333222300255X?via%3Dihub

Low-Dose Administration of Cannabigerol Attenuates Inflammation and Fibrosis Associated with Methionine/Choline Deficient Diet-Induced NASH Model via Modulation of Cannabinoid Receptor

nutrients-logo

“Non-Alcoholic Steatohepatitis (NASH) is the progressive form of Non-Alcoholic Fatty Liver Disease (NAFLD). NASH is distinguished by severe hepatic fibrosis and inflammation. The plant-derived, non-psychotropic compound cannabigerol (CBG) has potential anti-inflammatory effects similar to other cannabinoids. However, the impact of CBG on NASH pathology is still unknown. This study demonstrated the therapeutic potential of CBG in reducing hepatic steatosis, fibrosis, and inflammation.

Methods: 8-week-old C57BL/6 male mice were fed with methionine/choline deficient (MCD) diet or control (CTR) diets for five weeks. At the beginning of week 4, mice were divided into three sub-groups and injected with either a vehicle, a low or high dose of CBG for two weeks. Overall health of the mice, Hepatic steatosis, fibrosis, and inflammation were evaluated.

Results: Increased liver-to-body weight ratio was observed in mice fed with MCD diet, while a low dose of CBG treatment rescued the liver-to-body weight ratio. Hepatic ballooning and leukocyte infiltration were decreased in MCD mice with a low dose of CBG treatment, whereas the CBG treatment did not change the hepatic steatosis. The high dose CBG administration increased inflammation and fibrosis. Similarly, the expression of cannabinoid receptor (CB)1 and CB2 showed decreased expression with the low CBG dose but not with the high CBG dose intervention in the MCD group and were co-localized with mast cells. Additionally, the decreased mast cells were accompanied by decreased expression of transforming growth factor (TGF)-β1.

Conclusions: Collectively, the low dose of CBG alleviated hepatic fibrosis and inflammation in MCD-induced NASH, however, the high dose of CBG treatment showed enhanced liver damage when compared to MCD only group. These results will provide pre-clinical data to guide future intervention studies in humans addressing the potential uses of CBG for inflammatory liver pathologies, as well as open the door for further investigation into systemic inflammatory pathologies.”

https://pubmed.ncbi.nlm.nih.gov/36615835/

“In conclusion, this study provides initial findings and a foundation for future studies on the efficacy of CBG on NASH.”

https://www.mdpi.com/2072-6643/15/1/178