Neuroprotection in oxidative stress-related neurodegenerative diseases: role of endocannabinoid system modulation.

Image result

“Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in process of neurodegeneration.

Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases.

Critical Issue: Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system (ECS; comprising of the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids and their synthetic and metabolizing enzymes) and various key inflammatory and redox-dependent processes.

FUTURE DIRECTIONS:

Targeting the ECS in order to modulate redox state-dependent cell death, and to decrease consequent or preceding inflammatory response holds therapeutic potential in multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer`s and Parkinson`s diseases, and multiple sclerosis, just to name a few, which will be discussed in this overview.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Combined cannabinoid therapy via an oromucosal spray.

“Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects.”  https://www.ncbi.nlm.nih.gov/pubmed/16969427

“Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome.”  https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summaryn_pr?p_JournalId=4&p_RefId=1021517

“Sativex(®) (nabiximols, USAN name) oromucosal spray contains the two main active constituents of Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 molecular ratio, and acts as an endocannabinoid system modulator.”  https://www.ncbi.nlm.nih.gov/pubmed/21449855

“Abuse potential and psychoactive effects of δ-9-tetrahydrocannabinol and cannabidiol oromucosal spray (Sativex), a new cannabinoid medicine. Evidence to date suggests that abuse or dependence on Sativex is likely to occur in only a very small proportion of recipients.” https://www.ncbi.nlm.nih.gov/pubmed/21542664

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neurological aspects of medical use of cannabidiol.

Image result for CNS Neurol Disord Drug Targets.

“Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions. CBD neuroprotection is due to its antioxidant and antiinflammatory activi-ties and the modulation of a large number of brain biological targets (receptors, channels) involved in the development and maintenance of neurodegenerative diseases.

OBJECTIVE:

Aim of the present review was to describe the state of art about the pre-clinical research, the potential use and, when existing, the clinical evidence related to CBD in the neurological field.

RESULTS:

Laboratory and clinical studies on the potential role of CBD in Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), Huntington’s disease (HD), amyotrophic lateral sclerosis ALS), cerebral ischemia, were examined.

CONCLUSIONS:

Pre-clinical evidence largely shows that CBD can produce beneficial effects in AD, PD and MS patients, but its employment for these disorders needs further confirmation from well designed clinical studies. CBD pre-clinical demonstration of antiepileptic activity is supported by recent clinical studies in human epileptic subjects resistant to standard antiepileptic drugs showing its potential use in children and young adults affected by refractory epilepsy. Evidence for use of CBD in PD is still not supported by sufficient data whereas only a few studies including a small number of patients are available.”

https://www.ncbi.nlm.nih.gov/pubmed/28412918

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

(-)-β-Caryophyllene, a CB2 Receptor-Selective Phytocannabinoid, Suppresses Motor Paralysis and Neuroinflammation in a Murine Model of Multiple Sclerosis.

Image result for Int J Mol Sci.

“(-)-β-caryophyllene (BCP), a cannabinoid receptor type 2 (CB2)-selective phytocannabinoid, has already been shown in precedent literature to exhibit both anti-inflammatory and analgesic effects in mouse models of inflammatory and neuropathic pain.

Herein, we endeavored to investigate the therapeutic potential of BCP on experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). Furthermore, we sought to demonstrate some of the mechanisms that underlie the modulation BCP exerts on autoimmune activated T cells, the pro-inflammatory scenery of the central nervous system (CNS), and demyelination.

Our findings demonstrate that BCP significantly ameliorates both the clinical and pathological parameters of EAE. In addition, data hereby presented indicates that mechanisms underlying BCP immunomodulatory effect seems to be linked to its ability to inhibit microglial cells, CD4+ and CD8+ T lymphocytes, as well as protein expression of pro-inflammatory cytokines. Furthermore, it diminished axonal demyelination and modulated Th1/Treg immune balance through the activation of CB2 receptor.

Altogether, our study represents significant implications for clinical research and strongly supports the effectiveness of BCP as a novel molecule to target in the development of effective therapeutic agents for MS.” https://www.ncbi.nlm.nih.gov/pubmed/28368293

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Delta-9-Tetrahydrocannabinol/Cannabidiol Oromucosal Spray (Sativex®): A Review in Multiple Sclerosis-Related Spasticity.

Image result for Drugs journal

“Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (THC/CBD, Sativex®, nabiximols) is available in numerous countries worldwide for the treatment of multiple sclerosis (MS)-related moderate to severe spasticity in patients who have not responded adequately to other anti-spasticity medication and who demonstrate clinically significant improvement in spasticity-related symptoms during an initial trial of therapy.

Twelve weeks’ therapy with THC/CBD improved MS-related spasticity in patients with an inadequate response to other anti-spasticity agents who had undergone a successful initial trial of THC/CBD therapy, according to the results of a pivotal phase 3 trial.

Improvements in spasticity were maintained in the longer term with THC/CBD with no evidence of dose tolerance, and results of real-world studies confirm the effectiveness of THC/CBD in everyday clinical practice.

Improvements in health-related quality of life and activities of daily living were also seen with THC/CBD.

THC/CBD is generally well tolerated; adverse effects such as dizziness may occur whilst the THC/CBD dosage is being optimized.

THC/CBD has low abuse potential and a low risk of psychoactive effects.

In conclusion, THC/CBD oromucosal spray is a useful option for the treatment of MS-related spasticity not completely relieved with current anti-spasticity medication.”

https://www.ncbi.nlm.nih.gov/pubmed/28293911

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids therapeutic use: what is our current understanding following the introduction of THC, THC:CBD oromucosal spray and others?

 

Image result for Expert Rev Clin Pharmacol

“The complexity of the endocannabinoid (eCB) system is becoming better understood and new drivers of eCB signaling are emerging. Modulation of the activities of the eCB system can be therapeutic in a number of diseases.

Research into the eCB system has been paralleled by the development of agents that interact with cannabinoid receptors. In this regard it should be remembered that herbal cannabis contains a myriad of active ingredients, and the individual cannabinoids have quite distinct biological activities requiring independent studies.

This article reviews the most important current data involving the eCB system in relation to human diseases, to reflect the present (based mainly on the most used prescription cannabinoid medicine, THC/CBD oromucosal spray) and potential future uses of cannabinoid-based therapy.

Expert commentary: From the different therapeutic possibilities, THC/CBD oromucosal spray has been in clinical use for approximately five years in numerous countries world-wide for the management of multiple sclerosis (MS)-related moderate to severe resistant spasticity.

Clinical trials have confirmed its efficacy and tolerability.

Other diseases in which different cannabinoids are currently being investigated include various pain states, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and epilepsy. The continued characterization of individual cannabinoids in different diseases remains important.”

https://www.ncbi.nlm.nih.gov/pubmed/28276775

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Implication of cannabinoids in neurological diseases.

Image result for Cellular and Molecular Neurobiology

“1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson’s disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/16699878

“Medical marijuana: emerging applications for the management of neurologic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/15458761
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects on Spasticity and Neuropathic Pain of an Oral Formulation of Δ9-Tetrahydrocannabinol in Patients With Progressive Multiple Sclerosis

Image result for Clinical Therapeutics

“The aim of the present study was to evaluate the efficacy of an oral formulation of Δ9-tetrahydrocannabinol (ECP002A) in patients with progressive multiple sclerosis (MS).

Pain was significantly reduced when measured directly after administration of ECP002A in the clinic but not when measured in a daily diary. A similar pattern was observed in subjective muscle spasticity. Other clinical outcomes were not significantly different between active treatment and placebo. Cognitive testing indicated that there was no decline in cognition after 2 or 4 weeks of treatment attributable to ECP002A compared with placebo.

Implications This study specifically underlines the added value of thorough investigation of pharmacokinetic and pharmacodynamic associations in the target population. Despite the complex interplay of psychoactive effects and analgesia, the current oral formulation of Δ9-tetrahydrocannabinol may play a role in the treatment of spasticity and pain associated with MS because it was well tolerated and had a stable pharmacokinetic profile.”

https://www.ncbi.nlm.nih.gov/pubmed/28189366

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids.

 Image result for Front Mol Neurosci

“Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis.

In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis.

Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers.

Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes.

The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect.

While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations.”

https://www.ncbi.nlm.nih.gov/pubmed/28174520

http://journal.frontiersin.org/article/10.3389/fnmol.2017.00014/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation.

Image result for Br J Pharmacol.

“Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis.

CONCLUSIONS AND IMPLICATIONS:

The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family.”

https://www.ncbi.nlm.nih.gov/pubmed/24641282

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous