The antidepressant and anxiolytic effects of cannabinoids in chronic unpredictable stress: a preclinical systematic review and meta-analysis

Translational Psychiatry

“Neuroscience research presents contradictory evidence in support of both the protective and destructive effects of cannabinoids in depression. Therefore, this systematic review and meta-analysis summarizes the existing preclinical literature on the effects of cannabinoid administration in the chronic unpredictable stress model of depression in order to evaluate the effects of cannabinoids and identify gaps in the literature. After protocol registration (PROSPERO #CRD42020219986), we systematically searched Scopus, Embase, Psychology & Behavioral Sciences Collection, APA PsychINFO, PubMed, CINAHL Complete, and ProQuest Dissertations & Theses Global from the earliest record of the databases, February 1964, to November 2020 for articles that met inclusion criteria (e.g., rodent subjects and administration of a cannabinoid. A total of 26 articles were included representing a sample size estimate of 1132 rodents with the majority of articles administering daily intraperitoneal injections during chronic unpredictable stress. These articles were evaluated using a modified SYRCLE’s risk-of-bias tool. For each continuous behavioral measure, the standardized mean difference was calculated between cannabinoid and vehicle groups in rodents subjected to chronic unpredictable stress. The effects of cannabinoids on depressive-like behavior was evaluated using a multilevel mixed-effects model with effect size weights nested within control groups. Cannabinoid administration moderately improved the pooled negative effects of chronic unpredictable stress on anhedonia, learned helplessness, novelty suppressed feeding, time in the anxiogenic context, and entries into the anxiogenic context. Although the interpretations are limited, these findings suggest that with further investigation, cannabinoids may be a viable long-term treatment for stress-related psychopathologies such as depression.”

https://pubmed.ncbi.nlm.nih.gov/35641487/

https://www.nature.com/articles/s41398-022-01967-1


Medical cannabis use in Canada and its impact on anxiety and depression: A retrospective study

Psychiatry Research

“This was a retrospective study of patients utilizing medical cannabis who received their medical cannabis documentation and allotment from a Harvest Medicine clinic in Canada to determine the impact of medical cannabis on anxiety and depression outcomes. Patients included in the study were at least 18 years of age with completed validated questionnaires for anxiety (GAD-7) and depression (PHQ-9) at their initial evaluation and at least one follow-up visit. There were 7,362 patients included in the sample, of which the average age was 49.8 years, and 53.1% were female.

There were statistically significant improvements between baseline and follow-up scores for both the GAD-7 and PHQ-9, with larger improvements seen for patients who were actively seeking medical cannabis to treat anxiety or depression. From 12 months on, those reporting anxiety had an average decrease in GAD-7 scores that was greater than the minimum clinically important difference of 4, and the same was seen for patients reporting depression from 18 months on, with the average decrease in PHQ-9 scores more than the MCID minimum clinically important difference of 5. This study provides some evidence to support the effectiveness of medical cannabis as a treatment for anxiety and depression.”

https://pubmed.ncbi.nlm.nih.gov/35598566/

https://www.sciencedirect.com/science/article/abs/pii/S0165178122001834?via%3Dihub

A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD)

“Cannabidiol (CBD) is an abundant non-psychoactive phytocannabinoid in cannabis extracts which has high affinity on a series of receptors, including Type 1 cannabinoid receptor (CB1), Type 2 cannabinoid receptor (CB2), GPR55, transient receptor potential vanilloid (TRPV) and peroxisome proliferator-activated receptor gamma (PPARγ). By modulating the activities of these receptors, CBD exhibits multiple therapeutic effects, including neuroprotective, antiepileptic, anxiolytic, antipsychotic, anti-inflammatory, analgesic and anticancer properties. CBD could also be applied to treat or prevent COVID-19 and its complications. Here, we provide a narrative review of CBD’s applications in human diseases: from mechanism of action to clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/35083862/

“The herbal use of Cannabis sativa plant extract (also known as cannabis, hemp or marijuana) can be tracked back to ancient China, around 2900 BC.  Cannabidiol (CBD) is one of the most abundant extracts from C. sativa; it has multiple bioactivities and wide health benefits without psychoactive properties. In this review, we summarized the molecular mechanisms and clinical experience in support of CBD as a potential therapeutic compound for various diseases.”

https://onlinelibrary.wiley.com/doi/10.1111/bcpt.13710

An investigation of cannabis use for insomnia in depression and anxiety in a naturalistic sample

“Background: Little is known about cannabis use for insomnia in individuals with depression, anxiety, and comorbid depression and anxiety. To develop a better understanding of distinct profiles of cannabis use for insomnia management, a retrospective cohort study was conducted on a large naturalistic sample.

Methods: Data were collected using the medicinal cannabis tracking app, Strainprint®, which allows users to monitor and track cannabis use for therapeutic purposes. The current study examined users managing insomnia symptoms in depression (n = 100), anxiety (n = 463), and comorbid depression and anxiety (n = 114), for a total of 8476 recorded sessions. Inferential analyses used linear mixed effects modeling to examine self-perceived improvement across demographic variables and cannabis product variables.

Results: Overall, cannabis was perceived to be efficacious across all groups, regardless of age and gender. Dried flower and oral oil were reported as the most used and most efficacious product forms. In the depression group, all strains were perceived to be efficacious and comparisons between strains revealed indica-dominant (Mdiff = 1.81, 95% CI 1.26-2.36, Padj < .001), indica hybrid (Mdiff = 1.34, 95% CI 0.46-2.22, Padj = .045), and sativa-dominant (Mdiff = 1.83, 95% CI 0.68-2.99, Padj = .028) strains were significantly more efficacious than CBD-dominant strains. In anxiety and comorbid conditions, all strain categories were perceived to be efficacious with no significant differences between strains.

Conclusions: In terms of perceptions, individuals with depression, anxiety, and both conditions who use cannabis for insomnia report significant improvements in symptom severity after cannabis use. The current study highlights the need for placebo-controlled trials investigating symptom improvement and the safety of cannabinoids for sleep in individuals with mood and anxiety disorders.”

https://pubmed.ncbi.nlm.nih.gov/35484520/

Antidepressant and Anxiolytic Effects of Medicinal Cannabis Use in an Observational Trial

Archive of &quot;Frontiers in Psychiatry&quot;.“Anxiety and depressive disorders are highly prevalent. Patients are increasingly using medicinal cannabis products to treat these disorders, but little is known about the effects of medicinal cannabis use on symptoms of anxiety and depression.

The aim of the present observational study was to assess general health in medicinal cannabis users and non-using controls with anxiety and/or depression. 

Results: Medicinal cannabis use was associated with lower self-reported depression, but not anxiety, at baseline. Medicinal cannabis users also reported superior sleep, quality of life, and less pain on average. Initiation of medicinal cannabis during the follow-up period was associated with significantly decreased anxiety and depressive symptoms, an effect that was not observed in Controls that never initiated cannabis use. 

Conclusions: Medicinal cannabis use may reduce anxiety and depressive symptoms in clinically anxious and depressed populations. Future placebo-controlled studies are necessary to replicate these findings and to determine the route of administration, dose, and product formulation characteristics to optimize clinical outcomes.”

https://pubmed.ncbi.nlm.nih.gov/34566726/

https://www.frontiersin.org/articles/10.3389/fpsyt.2021.729800/full

“Johns Hopkins: New Study Backs Claims That Cannabis Can Reduce Anxiety And Depression”  https://finance.yahoo.com/news/johns-hopkins-study-backs-claims-145005658.html

“Report Shows Cannabis is Effective in Treating Anxiety, Depression”   https://www.legalreader.com/report-shows-cannabis-is-effective-in-treating-anxiety-depression/

The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

Efficacy and Safety of Cannabidiol Plus Standard Care vs Standard Care Alone for the Treatment of Emotional Exhaustion and Burnout Among Frontline Health Care Workers During the COVID-19 Pandemic: A Randomized Clinical Trial

Free Download JAMA Network Logo Vector from Tukuz.Com“Importance: Frontline health care professionals who work with patients with COVID-19 have an increased incidence of burnout symptoms. Cannabidiol (CBD) has anxiolytic and antidepressant properties and may be capable of reducing emotional exhaustion and burnout symptoms.

Objective: To investigate the safety and efficacy of CBD therapy for the reduction of emotional exhaustion and burnout symptoms among frontline health care professionals working with patients with COVID-19.

Interventions: Cannabidiol, 300 mg (150 mg twice per day), plus standard care or standard care alone for 28 days.

Main outcomes and measures: The primary outcome was emotional exhaustion and burnout symptoms, which were assessed for 28 days using the emotional exhaustion subscale of the Brazilian version of the Maslach Burnout Inventory-Human Services Survey for Medical Personnel.

Results: A total of 120 participants were randomized to receive either CBD, 300 mg, plus standard care (treatment arm; n = 61) or standard care alone (control arm; n = 59) for 28 days. Of those, 118 participants (59 participants in each arm; 79 women [66.9%]; mean age, 33.6 years [95% CI, 32.3-34.9 years]) received the intervention and were included in the efficacy analysis. In the treatment arm, scores on the emotional exhaustion subscale of the Maslach Burnout Inventory significantly decreased at day 14 (mean difference, 4.14 points; 95% CI, 1.47-6.80 points; partial eta squared [ηp2] = 0.08), day 21 (mean difference, 4.34 points; 95% CI, 0.94-7.73 points; ηp2 = 0.05), and day 28 (mean difference, 4.01 points; 95% CI, 0.43-7.59 points; ηp2 = 0.04). However, 5 participants, all of whom were in the treatment group, experienced serious adverse events: 4 cases of elevated liver enzymes (1 critical and 3 mild, with the mild elevations reported at the final 28-day assessment) and 1 case of severe pharmacodermia. In 2 of those cases (1 with critical elevation of liver enzymes and 1 with severe pharmacodermia), CBD therapy was discontinued, and the participants had a full recovery.

Conclusions and relevance: In this study, CBD therapy reduced symptoms of burnout and emotional exhaustion among health care professionals working with patients during the COVID-19 pandemic. However, it is necessary to balance the benefits of CBD therapy with potential undesired or adverse effects. Future double-blind placebo-controlled clinical trials are needed to confirm the present findings.”

https://pubmed.ncbi.nlm.nih.gov/34387679/

“Daily administration of CBD, 300 mg, combined with standard care reduced the symptoms and diagnoses of anxiety, depression, and emotional exhaustion among frontline health care professionals working with patients with COVID-19. Cannabidiol may act as an effective agent for the reduction of burnout symptoms among a population with important mental health needs worldwide.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2782994

Constituents of Cannabis Sativa

“The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified.

There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified.

Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder.

This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.”

https://pubmed.ncbi.nlm.nih.gov/33332000/

https://link.springer.com/chapter/10.1007%2F978-3-030-57369-0_1

The effectiveness of inhaled Cannabis flower for the treatment of agitation/irritability, anxiety, and common stress

Special Issue Springer/Nature BMC Medical Informatics & Decision Making -  Explainable-AI | human-centered.ai“An observational research design was used to evaluate which types of commonly labeled Cannabis flower product characteristics are associated with changes in momentary feelings of distress-related symptoms.

Results: In total, a decrease in symptom intensity levels was reported in 95.51% of Cannabis usage sessions, an increase in 2.32% of sessions, and no change in 2.16% of sessions. Fixed effects models showed, on average, respondents recorded a maximum symptom intensity reduction of 4.33 points for agitation/irritability (SE = 0.20, p < 0.01), 3.47 points for anxiety (SE = 0.13, p < 0.01), and 3.98 for stress (SE = 0.12, p < 0.01) on an 11-point visual analog scale. Fixed effects regressions showed that, controlling for time-invariant user characteristics, mid and high tetrahydrocannabinol (THC) levels were the primary independent predictor of increased symptom relief, and that when broken out by symptom type, this effect was only statistically significant for our largest sample of users, those reporting anxiety rather than agitation/irritability or stress. Cannabidiol (CBD) levels were generally not associated with changes in symptom intensity levels. In a minority of cannabis use sessions (< 13%), cannabis users reported anxiogenic-related negative side effects (e.g., feeling anxious, irritable, paranoid, rapid pulse, or restless), whereas in a majority of sessions (about 66%), users reported positive anxiolytic side effects (e.g., feeling chill, comfy, happy, optimistic, peaceful, or relaxed).

Conclusions: The findings suggest the majority of patients in our sample experienced relief from distress-related symptoms following consumption of Cannabis flower, and that among product characteristics, higher THC levels were the strongest predictors of relief.”

https://pubmed.ncbi.nlm.nih.gov/33526145/

“Our findings suggest that self-directed use of Cannabis flower, especially that with higher THC levels, is associated with significant improvements in at least short-term feelings of distress in many users, likely a contributing factor to its widespread popularity and consumption in the U.S.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00051-z

The effectiveness of inhaled Cannabis flower for the treatment of agitation/irritability, anxiety, and common stress

Cognetivity publishes MS paper in BMC Neurology Journal - Cognetivity  Neurosciences

“Background: An observational research design was used to evaluate which types of commonly labeled Cannabis flower product characteristics are associated with changes in momentary feelings of distress-related symptoms.

Results: In total, a decrease in symptom intensity levels was reported in 95.51% of Cannabis usage sessions, an increase in 2.32% of sessions, and no change in 2.16% of sessions. Fixed effects models showed, on average, respondents recorded a maximum symptom intensity reduction of 4.33 points for agitation/irritability (SE = 0.20, p < 0.01), 3.47 points for anxiety (SE = 0.13, p < 0.01), and 3.98 for stress (SE = 0.12, p < 0.01) on an 11-point visual analog scale. Fixed effects regressions showed that, controlling for time-invariant user characteristics, mid and high tetrahydrocannabinol (THC) levels were the primary independent predictor of increased symptom relief, and that when broken out by symptom type, this effect was only statistically significant for our largest sample of users, those reporting anxiety rather than agitation/irritability or stress. Cannabidiol (CBD) levels were generally not associated with changes in symptom intensity levels. In a minority of cannabis use sessions (< 13%), cannabis users reported anxiogenic-related negative side effects (e.g., feeling anxious, irritable, paranoid, rapid pulse, or restless), whereas in a majority of sessions (about 66%), users reported positive anxiolytic side effects (e.g., feeling chill, comfy, happy, optimistic, peaceful, or relaxed).

Conclusions: The findings suggest the majority of patients in our sample experienced relief from distress-related symptoms following consumption of Cannabis flower, and that among product characteristics, higher THC levels were the strongest predictors of relief.”

https://pubmed.ncbi.nlm.nih.gov/33526145/

“Our findings suggest that self-directed use of Cannabis flower, especially that with higher THC levels, is associated with significant improvements in at least short-term feelings of distress in many users, likely a contributing factor to its widespread popularity and consumption in the U.S.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00051-z