In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities

pubmed logo

“For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use.

Described as a ‘treasure trove,’ cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer’s, Parkinson’s, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.”

https://pubmed.ncbi.nlm.nih.gov/39056093/

https://www.sciencedirect.com/science/article/pii/S2214750024000684?via%3Dihub

Effects of Medical Cannabis Treatment for Autistic Children on Anxiety and Restricted and Repetitive Behaviors and Interests: An Open-Label Study

pubmed logo

“Background: The literature supports the benefits of medical cannabis for core and comorbid symptoms in autistic individuals and anxiety-related symptoms in individuals without autism. However, no study has specifically investigated how cannabidiol (CBD)-rich cannabis affects anxiety subtypes in autistic children or its relationship with restricted and repetitive behaviors and interests (RRBI). Understanding the effects of CBD-rich cannabis treatment on anxiety subtypes and RRBI could offer more precise treatment approaches to managing anxiety symptoms and reducing RRBI frequency in autistic children. 

Objectives: To examine (1) the impact of CBD-rich cannabis treatment on autistic children’s (1a) anxiety levels and subtypes and (1 b) RRBI and subtypes and (2) whether changes in anxiety explain changes in RRBI following cannabis treatment. 

Method: In this open-label study, we analyzed data from 65 autistic children (5-12 years) who had participated in research on the effects of CBD-rich cannabis on children with autism. Their parents completed the Repetitive Behavior Scale-revised to assess the frequency and severity of six subgroups of their children’s recurrent behaviors and the Screen for Child Anxiety-Related Emotional Disorders for symptoms related to five types of anxiety disorders. They completed these assessments at three time points: (T1) before treatment, (T2) after 3 months, and (T3) after 6 months of treatment. 

Results: The results indicated reduced RRBI and symptoms related to various anxiety subtypes in autistic children following 6 months of CBD-rich cannabis treatment. Specifically, we observed significant differences in the autistic children’s overall anxiety and in some anxiety subtypes (i.e., general, social, panic, and separation anxieties). Significant improvements were observed in RRBI, including the total score, and specifically in compulsive, ritualistic, and sameness behaviors. Our findings revealed that reduced anxiety, particularly within the panic- and separation-related subtypes, predicted a subsequent decrease in RRBI, specifically sameness behaviors, following cannabis treatment. 

Conclusions: The findings of the cannabis treatment’s potential benefits for alleviating anxiety symptoms, leading to reduced RRBI, may provide evidence for the meaningful relationship between these variables and for the potential benefits of cannabis treatment for autistic children. We strongly recommend further double-blind, placebo-controlled studies using standardized assessments to validate these findings.”

https://pubmed.ncbi.nlm.nih.gov/39047052/

https://www.liebertpub.com/doi/10.1089/can.2024.0001

The anxiolytic effects of cannabinoids: A comprehensive review

pubmed logo

“Cannabinoids, notably cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), have emerged as promising candidates for anxiety disorder treatment, supported by both preclinical and clinical evidence.

CBD exhibits notable anxiolytic effects with a favourable safety profile, though concerns regarding mild side effects and drug interactions remain. Conversely, THC, the primary psychoactive compound, presents a range of side effects, underscoring the importance of careful dosage management and individualized treatment strategies. So far there are no FDA approved cannabinoid medications for anxiety. The review highlights challenges in cannabinoid research, including dosage variability, variable preclinical data, and limited long-term data.

Despite these limitations, cannabinoids represent a promising avenue for anxiety management, with the potential for further optimization in formulation, dosing protocols, and consideration of interactions with conventional therapies. Addressing these challenges could pave the way for novel and personalized approaches to treating anxiety disorders using cannabinoid-based therapies.”

https://pubmed.ncbi.nlm.nih.gov/39032530/

“Cannabinoids have promising anxiolytic effects and favourable safety profile compared to contemporary anxiolytics.”

https://www.sciencedirect.com/science/article/abs/pii/S0091305724001229?via%3Dihub

Cannabidiol in anxiety disorders: Current and future perspectives

pubmed logo

“Anxiety disorders are highly prevalent psychiatric disorders, characterized by a chronic course and often accompanied by comorbid symptoms that impair functionality and decrease quality of life. Despite advances in basic and clinical research in our understanding of these disorders, currently available pharmacological options are associated with limited clinical benefits and side effects that frequently lead to treatment discontinuation. Importantly, a significant number of patients do not achieve remission and live with lifelong residual symptoms that limit daily functioning.

Since the 1970s, basic and clinical research on cannabidiol (CBD), a non-psychotomimetic compound found in the Cannabis sativa plant, has indicated relevant anxiolytic effects, garnering attention for its therapeutic potential as an option in anxiety disorder treatment. This chapter aims to review the history of these studies on the anxiolytic effects of CBD within the current understanding of anxiety disorders. It highlights the most compelling current evidence supporting its anxiolytic effects and explores future perspectives for its clinical use in anxiety disorders.”

https://pubmed.ncbi.nlm.nih.gov/39029985/

“In conclusion, the experimental and clinical use of CBD revealed significant anxiolytic effects. Since initial research in the 1970s, its potential as an anxiolytic agent has been explored by a growing number of studies using different models for anxiety disorders in pre-clinical, clinical and neuroimaging paradigms. This body of research has introduced CBD as a potential option for the treatment of anxiety disorders,”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000710?via%3Dihub

Cannabidiol effects on fear processing and implications for PTSD: Evidence from rodent and human studies

pubmed logo

“Cannabidiol (CBD) modulates aversive memory and its extinction, with potential implications for treating anxiety- and stress-related disorders. Here, we summarize and discuss scientific evidence showing that CBD administered after the acquisition (consolidation) and retrieval (reconsolidation) of fear memory attenuates it persistently in rats and mice. CBD also reduces fear expression and enhances fear extinction. These effects involve the activation of cannabinoid type-1 (CB1) receptors in the dorsal hippocampus, bed nucleus of stria terminalis, and medial prefrontal cortex, comprising the anterior cingulate, prelimbic, and infralimbic subregions. Serotonin type-1A (5-HT1A) receptors also mediate some CBD effects on fear memory. CBD effects on fear memory acquisition vary, depending on the aversiveness of the conditioning procedure. While rodent findings are relatively consistent and encouraging, human studies investigating CBD’s efficacy in modulating aversive/traumatic memories are still limited. More studies are needed to investigate CBD’s effects on maladaptive, traumatic memories, particularly in post-traumatic stress disorder patients.”

https://pubmed.ncbi.nlm.nih.gov/39029986/

“Rodent studies show that CBD can attenuate fear memories at several stages through its interaction with the endocannabinoid system (CB1 receptors). CBD can also reduce the intensity of fear responses through its interaction with 5-HT1A receptors and enhance the extinction of fear. However, the findings regarding CBD effects on fear memory acquisition are mixed. More research is needed to clarify these discrepancies.”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000503?via%3Dihub

Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial

pubmed logo

“Cannabigerol (CBG) is a phytocannabinoid increasing in popularity, with preclinical research indicating it has anxiolytic and antidepressant effects. However, there are no published clinical trials to corroborate these findings in humans.

The primary objective of this study was to examine acute effects of CBG on anxiety, stress, and mood. Secondary objectives were to examine whether CBG produces subjective drug effects or motor and cognitive impairments. A double-blind, placebo-controlled cross-over field trial was conducted with 34 healthy adult participants. Participants completed two sessions (with a one-week washout period) via Zoom. In each, they provided ratings of anxiety, stress, mood, and subjective drug effects prior to double-blind administration of 20 mg hemp-derived CBG or placebo tincture (T0). These ratings were collected again after participants ingested the product and completed an online survey (T1), the Trier Social Stress Test (T2), a verbal memory test and the DRUID impairment app (T3).

Relative to placebo, there was a significant main effect of CBG on overall reductions in anxiety as well as reductions in stress at T1. CBG also enhanced verbal memory relative to placebo. There was no evidence of subjective drug effects or impairment. CBG may represent a novel option to reduce stress and anxiety in healthy adults.”

https://pubmed.ncbi.nlm.nih.gov/39003387/

“In conclusion, results of this double-blind, placebo-controlled, cross-over field trial indicate that 20 mg of hemp-derived CBG reduces subjective ratings of anxiety and stress in healthy cannabis-using adults in the absence of motor or cognitive impairment, intoxication, or other subjective drug effects (e.g., heart palpitations, dry mouth).”

https://www.nature.com/articles/s41598-024-66879-0

Evaluation of the efficacy, safety, and pharmacokinetics of nanodispersible cannabidiol oral solution (150 mg/mL) versus placebo in mild to moderate anxiety subjects: A double blind multicenter randomized clinical trial

pubmed logo

“Background: Anxiety disorders, an increasingly prevalent global mental health illness, affected approximately 301 million individuals worldwide in 2019. There is an unmet need for the treatment of anxiety disorders, as current therapies are associated with limited response rates, residual symptoms, and adverse effects.

Objectives: To evaluate the efficacy, safety, and pharmacokinetics of nanodispersible cannabidiol (CBD) oral solution versus placebo for the treatment of mild to moderate anxiety disorders.

Methods: This phase 3 prospective, randomized, double blind, parallel group, placebo-controlled, 15-week cohort study took place at multiple sites across India. Eligible participants were randomly assigned to one of the two treatment arms (CBD or placebo) in a 1:1 ratio.

Results: 178 participants were randomized to receive CBD (n=89) or placebo (n=89). The study met both primary (GAD-7 and HAM-A scores) and secondary outcomes (CGI-I, CGI-S, PHQ-9 and PSQI scores). The GAD-7 score difference between the end of treatment and baseline for the CBD versus the placebo was -7.02 (S.E: 0.25, 95% CI -7.52; -6.52), p<0.0001. Similarly, the HAM-A score difference at the end of treatment compared to baseline for the CBD versus the placebo was -11.9 (S.E: 0.33, 95% CI -12.6; -11.3), p<0.0001.

Conclusions: Nanodispersible CBD was therapeutically safe with no serious adverse events, well tolerated, and effective for the treatment of mild to moderate anxiety disorders, as well as associated depression and sleep quality disturbances. These results pave way for probable prospective use of nanodispersible CBD formulation for various psychiatry disorders alone or in conjunction with other drugs.”

https://pubmed.ncbi.nlm.nih.gov/38797087/

“Nanodispersible CBD oral solution was effective treating mild to moderate anxiety.”

https://www.sciencedirect.com/science/article/pii/S1876201824001667?via%3Dihub

Medicinal Cannabis oil improves anxiety-like and depressive-like behaviors in CCS mice via the BDNF/TRPC6 signaling pathway

pubmed logo

“Background: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear.

Methods: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments.

Results: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway.

Conclusions: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.”

https://pubmed.ncbi.nlm.nih.gov/38641178/

https://www.sciencedirect.com/science/article/abs/pii/S016643282400161X?via%3Dihub

Cannabidiol improves maternal obesity-induced behavioral, neuroinflammatory and neurochemical dysfunctions in the juvenile offspring

pubmed logo

“Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established.

We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams.

Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus.

CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes.

Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/38608740/

https://www.sciencedirect.com/science/article/abs/pii/S0889159124003556?via%3Dihub

Cannabidiol exhibits anxiolytic-like effects and antipsychotic-like effects in mice models

pubmed logo

“Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has been confirmed to induce anxiolytic-like and antipsychotic-like effects. However, the exact mechanisms remain unclear.

This study substantiated CBD’s interaction with the 5-HT1A receptor (5-HT1AR) in vitro (CHO cells expressing human 5-HT1AR) and in vivo (rat lower lip retraction test, LLR test). We then assessed the impact of CBD in mice using the stress-induced hyperthermia (SIH) model and the phencyclidine (PCP)-induced negative symptoms of schizophrenia model, respectively. Concurrently, we investigated whether WAY-100635, a typical 5-HT1AR antagonist, could attenuate these effects. Furthermore, the neurotransmitter changes through high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were studied.

Results revealed that CBD exhibits selective 5-HT1AR agonists-mediated effects in the rat lower lip retraction test, aligning with the robust agonistic (EC50 = 1.75 μM) profile observed in CHO cells. CBD at 3 mg/kg significantly reduced SIH (ΔT), a response that WAY-100635 abolished. Chronic administration of CBD at 100 mg/kg mitigated the increase in PCP-induced immobility time in the forced swim test (FST) and tail suspension test (TST). Moreover, it induced significant alterations in gamma-aminobutyric acid (GABA) and norepinephrine (NE) levels within the hippocampus (HPC). Thus, we concluded that the 5-HT1AR mediates CBD’s anxiolytic-like effects. Additionally, CBD’s effects on the negative symptoms of schizophrenia may be linked to changes in GABA and NE levels in the hippocampus.

These findings offer novel insights for advancing the exploration of CBD’s anxiolytic-like and antipsychotic-like effects.”

https://pubmed.ncbi.nlm.nih.gov/38467272/

https://www.sciencedirect.com/science/article/abs/pii/S0304394024001009?via%3Dihub