Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

Image result for Front Neurosci.

“Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson’s disease, Huntington’s chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.”

THC (Δ9-Tetrahydrocannabinol) Exerts Neuroprotective Effect in Glutamate-affected Murine Primary Mesencephalic Cultures Through Restoring Mitochondrial Membrane Potential and Anti-apoptosis Involving CB1 Receptor-dependent Mechanism.

Phytotherapy Research

“Aging-related neurodegenerative diseases, such as Parkinson’s disease (PD) or related disorders, are an increasing societal and economic burden worldwide.

Δ9-Tetrahydrocannabinol (THC) is discussed as a neuroprotective agent in several in vitro and in vivo models of brain injury. However, the mechanisms by which THC exhibits neuroprotective properties are not completely understood.

In the present study, we investigated neuroprotective mechanisms of THC in glutamate-induced neurotoxicity in primary murine mesencephalic cultures, as a culture model for PD.

THC protected dopaminergic neurons and other cell types of primary dissociated cultures from glutamate-induced neurotoxicity.

Moreover, THC significantly counteracted the glutamate-induced mitochondrial membrane depolarization and apoptosis.

In conclusion, THC exerts anti-apoptotic and restores mitochondrial membrane potential via a mechanism dependent on CB1 receptor.

It strengthens the fact that THC has a benefit on degenerative cellular processes occurring, among others, in PD and other neurodegenerative diseases by slowing down the progression of neuronal cell death.”

https://www.ncbi.nlm.nih.gov/pubmed/27654887

http://onlinelibrary.wiley.com/wol1/doi/10.1002/ptr.5712/full

Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid.

Image result for Transl Psychiatry.

“Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD.

Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD.

In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoidreceptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood.

Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood.

This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients.”

Tetrahydropyrazolo[4,3-c]pyridine derivatives as potent and peripherally selective cannabinoid-1 (CB1) receptor inverse agonists.

Image result for Bioorg Med Chem Lett

“Peripherally restricted CB1 receptor inverse agonists hold potential as useful therapeutics to treat obesity and related metabolic diseases without causing undesired CNS-mediated adverse effects. We identified a series of tetrahydropyrazolo[4,3-c]pyridine derivatives as potent and highly peripherally selective CB1 receptor inverse agonists. This discovery was achieved by introducing polar functional groups into the molecule, which increase the topological polar surface area and reduce its brain-penetrating ability.”

https://www.ncbi.nlm.nih.gov/pubmed/27671499

“Tetrahydroindazole derivatives as potent and peripherally selective cannabinoid-1 (CB1) receptor inverse agonists. A series of potent and receptor-selective cannabinoid-1 (CB1) receptor inverse agonists has been discovered. Peripheral selectivity of the compounds was assessed by a mouse tissue distribution study, in which the concentrations of a test compound in both plasma and brain were measured. A number of peripherally selective compounds have been identified through this process. Compound 2p was further evaluated in a 3-week efficacy study in the diet-induced obesity (DIO) mouse model. Beneficial effects on plasma glucose were observed from the compound-treated mice.”  https://www.ncbi.nlm.nih.gov/pubmed/27671496

Gonadal hormone modulation of ∆9-tetrahydrocannabinol-induced antinociception and metabolism in female versus male rats.

Image result for Pharmacol Biochem Behav

“The gonadal hormones testosterone (T) in adult males and estradiol (E2) in adult females have been reported to modulate behavioral effects of ∆9-tetrahydrocannabinol (THC). This study determined whether activational effects of T and E2 are sex-specific, and whether hormones modulate production of the active metabolite 11-hydroxy-THC (11-OH-THC) and the inactive metabolite 11-nor-9-carboxy-THC (THC-COOH). Adult male and female rats were gonadectomized (GDX) and treated with nothing (0), T (10-mm Silastic capsule/100g body weight), or E2 (1-mm Silastic capsule/rat). Three weeks later, saline or the cytochrome P450 inhibitor proadifen (25mg/kg; to block THC metabolism and boost THC’s effects) was injected i.p.; 1h later, vehicle or THC (3mg/kg females, 5mg/kg males) was injected i.p., and rats were tested for antinociceptive and motoric effects 15-240min post-injection. T did not consistently alter THC-induced antinociception in males, but decreased it in females (tail withdrawal test). Conversely, T decreased THC-induced catalepsy in males, but had no effect in females. E2 did not alter THC-induced antinociception in females, but enhanced it in males. The discrepant effects of T and E2 on males’ and females’ behavioral responses to THC suggests that sexual differentiation of THC sensitivity is not simply due to activational effects of hormones, but also occurs via organizational hormone or sex chromosome effects. Analysis of serum showed that proadifen increased THC levels, E2 increased 11-OH-THC in GDX males, and T decreased 11-OH-THC (and to a lesser extent, THC) in GDX females. Thus, hormone modulation of THC’s behavioral effects is caused in part by hormone modulation of THC oxidation to its active metabolite. However, the fact that hormone modulation of metabolism did not alter THC sensitivity similarly on all behavioral measures within each sex suggests that other mechanisms also play a role in gonadal hormone modulation of THC sensitivity in adult rats.”

https://www.ncbi.nlm.nih.gov/pubmed/27670094

The Effect of Chronic Activation of the Novel Endocannabinoid Receptor GPR18 on Myocardial Function and Blood Pressure in Conscious Rats.

Image result for journal of cardiovascular pharmacology

“While acute activation of the novel endocannabinoid receptor GPR18 causes hypotension, there are no reports on GPR18 expression in the heart or its chronic modulation of cardiovascular function. In this study, after demonstrating GPR18 expression in the heart, we show that chronic (2 weeks) GPR18 activation with its agonist abnormal cannabidiol (abn-cbd; 100 µg/kg/day; i.p) produced hypotension, suppressed the cardiac sympathetic dominance, and improved left ventricular (LV) function (increased the contractility index dp/dtmax, and reduced LV end diastolic pressure, LVEDP) in conscious rats. Ex vivo studies revealed increased: (i) cardiac and plasma adiponectin (ADN) levels; (ii) vascular (aortic) endothelial nitric oxide synthase (eNOS) expression, (iii) vascular and serum nitric oxide (NO) levels; (iv) myocardial and plasma cyclic guanosine monophosphate (cGMP) levels; (v) phosphorylation of myocardial protein kinase B (Akt) and extracellular signal regulated kinase 1/2 (ERK1/2) along with reduced myocardial reactive oxygen species (ROS) in abn-cbd treated rats. These biochemical responses contributed to the hemodynamic responses and were GPR18-mediated because concurrent treatment with the competitive GPR18 antagonist (O-1918) abrogated the abn-cbd evoked hemodynamic and biochemical responses. The current findings present new evidence for a salutary cardiovascular role for GPR18, mediated, at least partly, via elevation in the levels of ADN.”

Endocannabinoid signaling in social functioning: an RDoC perspective.

Image result for Transl Psychiatry.

“Core deficits in social functioning are associated with various neuropsychiatric and neurodevelopmental disorders, yet biomarker identification and the development of effective pharmacological interventions has been limited.

Recent data suggest the intriguing possibility that endogenous cannabinoids, a class of lipid neuromodulators generally implicated in the regulation of neurotransmitter release, may contribute to species-typical social functioning.

Systematic study of the endogenous cannabinoid signaling could, therefore, yield novel approaches to understand the neurobiological underpinnings of atypical social functioning.

This article provides a critical review of the major components of the endogenous cannabinoid system (for example, primary receptors and effectors-Δ9-tetrahydrocannabinol, cannabidiol, anandamide and 2-arachidonoylglycerol) and the contributions of cannabinoid signaling to social functioning.

Data are evaluated in the context of Research Domain Criteria constructs (for example, anxiety, chronic stress, reward learning, motivation, declarative and working memory, affiliation and attachment, and social communication) to enable interrogation of endogenous cannabinoid signaling in social functioning across diagnostic categories.

The empirical evidence reviewed strongly supports the role for dysregulated cannabinoid signaling in the pathophysiology of social functioning deficits observed in brain disorders, such as autism spectrum disorder, schizophrenia, major depressive disorder, posttraumatic stress disorder and bipolar disorder.

Moreover, these findings indicate that the endogenous cannabinoid system holds exceptional promise as a biological marker of, and potential treatment target for, neuropsychiatric and neurodevelopmental disorders characterized by impairments in social functioning.”

https://www.ncbi.nlm.nih.gov/pubmed/27676446

Cannabidiol, among Other Cannabinoid Drugs, Modulates Prepulse Inhibition of Startle in the SHR Animal Model: Implications for Schizophrenia Pharmacotherapy.

Image result for Front Pharmacol

“Schizophrenia is a severe psychiatric disorder that involves positive, negative and cognitive symptoms. Prepulse inhibition of startle reflex (PPI) is a paradigm that assesses the sensorimotor gating functioning and is impaired in schizophrenia patients as well as in animal models of this disorder. Recent data point to the participation of the endocannabinoid system in the pathophysiology and pharmacotherapy of schizophrenia. Here, we focus on the effects of cannabinoid drugs on the PPI deficit of animal models of schizophrenia, with greater focus on the SHR (Spontaneously Hypertensive Rats) strain, and on the future prospects resulting from these findings.”

Use of marijuana for medical purposes.

Image result for Ann Agric Environ Med.

“Cannabis is the most popular illicit drug on the European market. Over 16 million young Europeans have used it at least once in the last few years. The recent trends in the consumption of marihuana differ between countries. Some countries face an increase in the prevalence of cannabis use, including Poland, where the level cannabis use has been systematically increasing since the 1990’s. According to a recent ESPAD study, 19% of Polish adolescents aged 15-16 have used cannabis in the last year. Marihuana is also a leading substance when analyzing the data of seizures and crimes. The recent EMCDDA Annual report on the drug situation in Europe notes the increasing potency in cannabis available on the market. Some countries face an increasing number of emergencies caused by marihuana, which was unlikely to have happened previously. In almost all European countries there is an ongoing discussion about loosening marijuana laws or its complete legalization. There is also ongoing discussion on the use of marihuana in therapy as a medicine. Many scientific studies are being conducted in this field. Some of the results are promising; however, there is no well-designed human trial which would unequivocally confirm that medical cannabis is effective as a medicine, or more effective than other medicines on the market. The problem is that the debate on the medical use of marihuana becomes more ideological and less professional. The medical use of marihuana is strongly supported by organizations lobbying for the legalization of cannabis use. Research on the medical use of cannabis should be continued, as there are some promising results supporting therapy in different medical conditions. However, the use of cannabis as a medicine should be discussed only among professionals. If marihuana is to be used for medical purposes, the fact that it is the most popular illicit drug in Europe is irrelevant.”

http://www.ncbi.nlm.nih.gov/pubmed/27660881

Medical Marijuana: Just the Beginning of a Long, Strange Trip?

Physical Therapy Journal

“Medical marijuana continues to gain acceptance and become legalized in many states. Various species of the marijuana plant have been cultivated, and this plant can contain up to 100 active compounds known as cannabinoids.

Two cannabinoids seem the most clinically relevant: Δ9-tetrahydrocannabinol (THC), which tends to produce the psychotropic effects commonly associated with marijuana, and cannabidiol (CBD), which may produce therapeutic effects without appreciable psychoactive properties.

Smoking marijuana, or ingesting extracts from the whole plant orally (in baked goods, teas, and so forth), introduces variable amounts of THC, CBD, and other minor cannabinoids into the systemic circulation where they ultimately reach the central and peripheral nervous systems.

Alternatively, products containing THC, CBD, or a combination of both compounds, can also be ingested as oral tablets, or via sprays applied to the oral mucosal membranes. These products may provide a more predictable method for delivering a known amount of specific cannabinoids into the body.

Although there is still a need for randomized controlled clinical trials, preliminary studies have suggested that medical marijuana and related cannabinoids may be beneficial in treating chronic pain, inflammation, spasticity, and other conditions seen commonly in physical therapist practice.

Physical therapists should therefore be aware of the options that are available for patients considering medical marijuana, and be ready to provide information for these patients.”

http://www.ncbi.nlm.nih.gov/pubmed/27660328