Cannabimimetic plants: are they new cannabinoidergic modulators?

“Phytochemicals and secondary metabolites able to interact with the endocannabinoid system (Cannabimimetics) have been recently described in a broad range of plants and fruits. These findings can open new alternative avenues to explore for the development of novel therapeutic compounds. The cannabinoids regulate many physiological and pathological functions in both animals and plants. Cannabis sativa is the main plant that produces phytocannabinoids inside resins capable to defend the plant from the aggression of parasites and herbivores. Animals produce anandamide and 2-arachidonoyl glycerol, which thanks to binding with main receptors such as type-1 cannabinoid receptor (CB1R) and the type-2 cannabinoid receptor (CB2R) are involved in inflammation processes and several brain functions. Endogenous cannabinoids, enzymes for synthesis and degradation of cannabinoids, and CB1R and CB2R constitute the endocannabinoid system (ECS). Other plants can produce cannabinoid-like molecules such as perrottetinene extracted from Radula perrottetii, or anandamide and 2-arachidonoyl glycerol extracted from some bryophytes. Moreover, several other secondary metabolites can also interact with the ECS of animals and take the name of cannabimimetics. These phytoextracts not derived from Cannabis sativa can act as receptor agonists or antagonist, or enzyme inhibitors of ECS and can be involved in the inflammation, oxidative stress, cancer, and neuroprotection. Finally, given the evolutionary heterogeneity of the cannabimimetic plants, some authors speculated on the fascinating thesis of the evolutionary convergence between plants and animals regarding biological functions of ECS. The review aims to provide a critical and complete assessment of the botanical, chemical and therapeutic aspects of cannabimimetic plants to evaluate their spread in the world and medicinal potentiality.”

https://www.ncbi.nlm.nih.gov/pubmed/30877436

https://link.springer.com/article/10.1007%2Fs00425-019-03138-x

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Expression of Cannabinoid Receptors in Myometrium and its Correlation With Dysmenorrhea in Adenomyosis.

 

Related image

“The myometrium, especially the junctional zone (JZ), is now well documented to have a role in the pathogenesis of adenomyosis. Cannabinoid receptors have been shown to participate in the establishment of endometriosis and its pain perception. However, its relation to adenomyosis has not been identified yet. The aim of this study was to investigate the expression of cannabinoid receptor type I (CB1) and type II (CB2) in myometrium of uteri with and without adenomyosis and determine the correlation between their levels and clinical parameters of adenomyosis. We collected tissue samples of JZ and the outer myometrium from 45 premenopausal women with adenomyosis and 34 women without adenomyosis. CB1 and CB2 messenger RNA (mRNA) and protein expression levels were evaluated by the use of Western blotting and real-time quantitative polymerase chain reaction from all samples. Clinical information on the severity of dysmenorrhea and other data were collected. We found both CB1 and CB2 mRNA and protein levels in women with adenomyosis were significantly higher than those of controls, and CB1 expression levels in JZ were positively correlated with the severity of dysmenorrhea. These data suggest that cannabinoid receptor CB1 may be involved in the pathogenesis of dysmenorrhea in adenomyosis and may be a potential therapeutic target.”

https://www.ncbi.nlm.nih.gov/pubmed/30832539

https://journals.sagepub.com/doi/abs/10.1177/1933719119833483?journalCode=rsxb

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Second Cannabinoid Receptor Has the Yin to the First Receptor’s Yang

“Understanding the diverse effects that cannabis has on the human body is imperative if we hope to take advantage of its medicinal properties to treat various disorders. As such, elucidating the molecular structure of the receptors that bind endocannabinoids is a critical step toward developing selective drugs that can differentiate between the two known receptors—CB1 and CB2—for these molecules. Since the structure of the CB1 receptor was resolved a few years ago, an international team of researchers led by scientists at the iHuman Institute within ShanghaiTech University has just published the crystal structure of the human type 2 cannabinoid receptor, CB2.

Findings from the new study—published recently in Cell through an article titled “Crystal Structure of the Human Cannabinoid Receptor CB2”—should be helpful in the development of drugs against inflammatory, neurodegenerative, and other diseases. The study authors compared the newly discovered structure to that of the CB1 receptor, deeming the two receptors to be the “yin and yang” of the human endocannabinoid system.”

“Crystal Structure of the Human Cannabinoid Receptor CB1” https://www.cell.com/fulltext/S0092-8674(16)31385-X
“Crystal Structure of the Human Cannabinoid Receptor CB2” https://www.cell.com/cell/pdf/S0092-8674(18)31625-8.pdf
“This study compares newly discovered structures to those of the CB1 receptor, and deems the two receptors to be the Yin and Yang of the human endocannabinoid system, which is a signalling system that regulates biological processes such as pain, immune function, metabolism, and neuronal activities among others.” https://www.worldhealth.net/news/ying-yang-second-cannabinoid-receptor/
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Crystal Structure of the Human Cannabinoid Receptor CB2

Figure thumbnail fx1

“The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257’s unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.”
“Study reveals the structure of the 2nd human cannabinoid receptor”   HTTPS://MIPT.RU/ENGLISH/NEWS/STUDY_REVEALS_THE_STRUCTURE_OF_THE_2ND_HUMAN_CANNABINOID_RECEPTOR
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis.

Image result for hindawi journal

“Adenomyosis is a common gynecologic benign disease that may have a life-long negative impact on women.

Previous studies have indicated that the endocannabinoid system may participate in the progress of endometriosis.

Our research aims to analyze the expression patterns of the typical cannabinoid receptors (CB1 and CB2), the main constituents of the endocannabinoid system, in endometrial samples derived from patients diagnosed as adenomyosis or not.

RESULTS:

In either the proliferative or the secretory phase, CB1 and CB2 protein and mRNA levels were both significantly lower in the eutopic and ectopic endometrium of adenomyosis when compared with normal endometrium. For women with adenomyosis, CB1 and CB2 protein and mRNA levels were much lower in the ectopic endometrium than the eutopic in both phases of the cycle. Both CB1 and CB2 protein and mRNA levels were increased during the secretory phase in normal endometrium, while CB1 lost its cyclic variation in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis.

CONCLUSION:

The decreased expression of CB1 and CB2 in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis suggests that cannabinoid receptors may participate in the pathogenesis of adenomyosis.”

https://www.ncbi.nlm.nih.gov/pubmed/30800671

“In conclusion, we found a significant decrease in the cannabinoid receptors CB1 and CB2 in the eutopic and ectopic endometrium of patients with adenomyosis, regardless of the menstrual phase, suggesting that CB1 and CB2 participate in the pathogenesis of this condition.”

https://www.hindawi.com/journals/bmri/2019/5468954/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

WIN55,212-2 induces caspase-independent apoptosis on human glioblastoma cells by regulating HSP70, p53 and Cathepsin D.

Toxicology in Vitro

“Despite the standard approaches to treat the highly aggressive and invasive glioblastoma (GBM), it remains incurable.

In this sense, cannabinoids highlight as a promising tool, because this tumor overexpresses CB1 and/or CB2 receptors and being, therefore, can be susceptible to cannabinoids treatment.

Thus, this work investigated the action of the cannabinoid agonist WIN55-212-2 on GBM cell lines and non-malignant cell lines, in vitro and in vivo. WIN was selectively cytotoxic to GBM cells. These presented blebbing and nuclear alterations in addition to cell shrinkage and chromatin condensation. WIN also significantly inhibited the migration of GAMG and U251 cells.

Finally, the data also showed that the antitumor effects of WIN are exerted, at least to some extent, by the expression of p53 and increased cathepsin D in addition to the decreased expression of HSP70.This data can indicate caspase-independent cell death mechanism. In addition, WIN decreased tumoral perimeter as well as caused a reduction the blood vessels in this area, without causing lysis, hemorrhage or blood clotting.

So, the findings herein presented reinforce the usefulness of cannabinoids as a candidate for further evaluation in treatment in glioblastoma treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/30776504

https://www.sciencedirect.com/science/article/pii/S0887233318307537?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New Insights in Cannabinoid Receptor Structure and Signaling.

“Cannabinoid has long been used for medicinal purposes. Cannabinoid signaling has been considered the therapeutic targets for treating pain, addiction, obesity, inflammation, and other diseases. Recent studies have suggested that in addition to CB1 and CB2, there are non-CB1 and non-CB2 cannabinoid-related orphan GPCRs including GPR18, GPR55, and GPR119. In addition, CB1 and CB2 display allosteric binding and biased signaling, revealing correlations between biased signaling and functional outcomes. Interestingly, new investigations have indicated that CB1 is functionally present within mitochondria of striated and heart muscles directly regulating intramitochondrial signaling and respiration.

CONCLUSION:

In this review, we summarize the recent progress in cannabinoid-related orphan GPCRs, CB1/CB2 structure, Gi/Gs coupling, allosteric ligands and biased signaling, and mitochondria-localized CB1, and discuss the future promise of this research.”

https://www.ncbi.nlm.nih.gov/pubmed/30767756

http://www.eurekaselect.com/170011/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

On the influence of cannabinoids on cell morphology and motility of glioblastoma cells.

 Image result for plos one

“The mechanisms behind the anti-tumoral effects of cannabinoids by impacting the migratory activity of tumor cells are only partially understood. Previous studies demonstrated that cannabinoids altered the organization of the actin cytoskeleton in various cell types.

As actin is one of the main contributors to cell motility and is postulated to be linked to tumor invasion, we tested the following hypothesizes: 1) Can cannabinoids alter cell motility in a cannabinoid receptor dependent manner? 2) Are these alterations associated with reorganizations in the actin cytoskeleton? 3) If so, what are the underlying molecular mechanisms?

Three different glioblastoma cell lines were treated with specific cannabinoid receptor 1 and 2 agonists and antagonists. Afterwards, we measured changes in cell motility using live cell imaging and alterations of the actin structure in fixed cells. Additionally, the protein amount of phosphorylated p44/42 mitogen-activated protein kinase (MAPK), focal adhesion kinases (FAK) and phosphorylated FAK (pFAK) over time were measured.

Cannabinoids induced changes in cell motility, morphology and actin organization in a receptor and cell line dependent manner. No significant changes were observed in the analyzed signaling molecules. Cannabinoids can principally induce changes in the actin cytoskeleton and motility of glioblastoma cell lines. Additionally, single cell motility of glioblastoma is independent of their morphology. Furthermore, the observed effects seem to be independent of p44/42 MAPK and pFAK pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/30753211

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212037

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Opposite effects of cannabinoid CB1 and CB2 receptors on antipsychotic clozapine-induced cardiotoxicity.

Publication cover image

“Clozapine is an atypical antipsychotic drug that is very efficacious in treating psychosis but the risk of severe cardiotoxicity limits its clinical use.

The present study investigated the myocardial injury effects of clozapine and assessed the involvement of cannabinoid receptors in clozapine cardiotoxicity.

Our data provided evidence that cannabinoid CB1 and CB2 receptors had opposite effects and selective antagonists of CB1R or agonists of CB2R might confer protective effects against clozapine.”

https://www.ncbi.nlm.nih.gov/pubmed/30707759

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14591

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Potential Use of Cannabinoids for the Treatment of Pancreatic Cancer.

Image result for Journal Pancreatic Cancer

Cannabinoid extracts may have anticancer properties, which can improve cancer treatment outcomes.

The aim of this review is to determine the potentially utility of cannabinoids in the treatment of pancreatic cancer.

Results: Cannabinol receptors have been identified in pancreatic cancer with several studies showing in vitroantiproliferative and proapoptotic effects. The main active substances found in cannabis plants are cannabidiol (CBD) and tetrahydrocannabinol (THC). There effects are predominately mediated through, but not limited to cannabinoid receptor-1, cannabinoid receptor-2, and G-protein-coupled receptor 55 pathways. In vitro studies consistently demonstrated tumor growth-inhibiting effects with CBD, THC, and synthetic derivatives. Synergistic treatment effects have been shown in two studies with the combination of CBD/synthetic cannabinoid receptor ligands and chemotherapy in xenograft and genetically modified spontaneous pancreatic cancer models. There are, however, no clinical studies to date showing treatment benefits in patients with pancreatic cancer.

Conclusions: Cannabinoids may be an effective adjunct for the treatment of pancreatic cancer. Data on the anticancer effectiveness of various cannabinoid formulations, treatment dosing, precise mode of action, and clinical studies are lacking.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous