Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer.

 Journal of Controlled Release

“Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with poor prognosis and inadequate therapeutic outcome. This contribution reports the use of a cannabinoid derivative, WIN55,212-2 (WIN) on the growth of TNBC in a 4T1 syngeneic mouse model.

To reduce the well-known psychoactive side effects of cannabinoids, we prepared a nanomicellar formulation of WIN (SMA-WIN). In vivo biodistribution, in silico ADME predictions, anticancer activity, and psychoactive effect of WIN and SMA-WIN studies suggest that SMA-WIN formulation can reduce to greater extent tumor growth with milder psychoactive side effects when compared to free drug.

Finally, the effects of WIN and SMA-WIN in combination with doxorubicin (Doxo), an established chemotherapeutic agent for the treatment of TNBC, were investigated in vitro and in vivo. SMA-WIN in combination with Doxo showed therapeutic efficacy and was able to reduce the tumor volume of TNBC murine model drastically. Moreover, SMA-WIN, while favoring drug tumor accumulation, minimized the adverse psychoactive effects that have impeded the use of this agent in the clinic.

To our knowledge, this is the first report for the assessment of cannabinoid nanoparticles in vivo for the treatment of TNBC and its enhanced anticancer effect at low doses with Doxo. These findings suggest a new therapeutic strategy in the management of TNBC.”

https://www.ncbi.nlm.nih.gov/pubmed/30367922

https://www.sciencedirect.com/science/article/pii/S0168365918306114?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A systematic review on the neuroprotective perspectives of beta-caryophyllene.

Image result for phytother res

“Beta (β)-caryophyllene (BCAR) is a major sesquiterpene of various plant essential oils reported for several important pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, antimicrobial, and immune-modulatory activity. Recent studies suggest that it also possesses neuroprotective effect.

This study reviews published reports pertaining to the neuropharmacological activities of BCAR. Databases such as PubMed, Scopus, MedLine Plus, and Google Scholar with keywords “beta (β)-caryophyllene” and other neurological keywords were searched. Data were extracted by referring to articles with information about the dose or concentration/route of administration, test system, results and discussion, and proposed mechanism of action.

A total of 545 research articles were recorded, and 41 experimental studies were included in this review, after application of exclusion criterion. Search results suggest that BCAR exhibits a protective role in a number of nervous system-related disorders including pain, anxiety, spasm, convulsion, depression, alcoholism, and Alzheimer’s disease.

Additionally, BCAR has local anesthetic-like activity, which could protect the nervous system from oxidative stress and inflammation and can act as an immunomodulatory agent. Most neurological activities of this natural product have been linked with the cannabinoid receptors (CBRs), especially the CB2R. This review suggests a possible application of BCAR as a neuroprotective agent.”

https://www.ncbi.nlm.nih.gov/pubmed/30281175

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.” http://www.ncbi.nlm.nih.gov/pubmed/23138934

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Report of Objective Clinical Responses of Cancer Patients to Pharmaceutical-grade Synthetic Cannabidiol.

“Cannabinoids are widely used in the management of pain, nausea and cachexia in cancer patients. However, there has been no objective clinical evidence of any anticancer activity yet.

The aim of this study was to assess the effects of pharmaceutical-grade synthetic cannabidiol on a range of cancer patients.

RESULTS:

Clinical responses were seen in 92% of the 119 cases with solid tumours including a reduction in circulating tumour cells in many cases and in other cases, a reduction in tumour size, as shown by repeat scans. No side-effects of any kind were observed when using pharmaceutical grade synthetic cannabidiol.

CONCLUSION:

Pharmaceutical-grade synthetic cannabidiol is a candidate for treating breast cancer and glioma patients.”

https://www.ncbi.nlm.nih.gov/pubmed/30275207

http://ar.iiarjournals.org/content/38/10/5831

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Bortezomib And Endocannabinoid/Endovanilloid System: A Synergism In Osteosarcoma.

Pharmacological Research

“Osteosarcoma is the most common primary malignant tumor of bone in children and adolescents.

Bortezomib (BTZ) is an approved anticancer drug, classified as a selective reversible inhibitor of the ubiquitin-dependent proteasome system, that leads to cancer cell cycle arrest and apoptosis reducing the invasion ability of Osteosarcoma cells in vitro. It also regulates the RANK/RANKL/OPG system, involved in the pathogenesis of bone tumors and in cell migration.

A side effect of BTZ is to induce painful sensory peripheral neuropathy which lead to cessation of therapy or dose reduction.

Recently BTZ has been evaluated in combination with Cannabinoids targeting CB1 receptor, demonstrating a promising synergic effect.

The Endocannabinoid/Endovanilloid (EC/EV) system includes two G protein-coupled receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their endogenous ligands and enzymes.

CB1 and CB2 are expressed mainly in Central Nervous System and Immune Peripheral cells respectively. TRPV1 is also expressed in primary sensory neurons and is involved in pain modulation.

EC/EV system induces apoptosis, reduces invasion and cell proliferation in Osteosarcoma cell lines and is involved in bone metabolism.

We analyzed the effects of BTZ, alone and in combination with selective agonists at CB2 (JWH-133) and TRPV1 (RTX) receptors, in the Osteosarcoma cell line (HOS) on Apoptosis, Cell Cycle progression, migration and bone balance. We observed that the stimulation of CB2 and TRPV1 receptors increase the efficacy of BTZ in inducing apoptosis and reducing invasion, cell cycle progression and by modulating bone balance.

These data suggest the possibility to use BTZ, in combination with EC/EV agonists, in Osteosarcoma therapy reducing its dose and its side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30267762

https://www.sciencedirect.com/science/article/abs/pii/S1043661818310387

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting Glioma Initiating Cells With A Combined Therapy Of Cannabinoids And Temozolomide.

Biochemical Pharmacology

“Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor due, at least in part, to its poor response to current anticancer treatments. These features could be explained, at least partially, by the presence within the tumor mass of a small population of cells termed Glioma Initiating Cells (GICs) that has been proposed to be responsible for the relapses occurring in this disease. Thus, the development of novel therapeutic approaches (and specifically those targeting the population of GICs) is urgently needed to improve the survival of the patients suffering this devastating disease.

Previous observations by our group and others have shown that Δ9-Tetrahydrocannabinol (THC, the main active ingredient of marijuana) and other cannabinoids including cannabidiol (CBD) exert antitumoral actions in several animal models of cancer, including gliomas.

We also found that the administration of THC (or of THC + CBD at a 1:1 ratio) in combination with temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

In this work we investigated the effect of the combination of TMZ and THC:CBD mixtures containing different ratios of the two cannabinoids in preclinical glioma models, including those derived from GICs.

Our findings show that TMZ + THC:CBD combinations containing a higher proportion of CDB (but not TMZ + CBD alone) produce a similar antitumoral effect as the administration of TMZ together with THC and CBD at a 1:1 ratio in xenografts generated with glioma cell lines. In addition, we also found that the administration of TMZ + THC:CBD at a 1:1 ratio reduced the growth of orthotopic xenografts generated with GICs derived from GBM patients and enhanced the survival of the animals bearing these intracranial xenografts.

Remarkably, the antitumoral effect observed in GICs-derived xenografts was stronger when TMZ was administered together with cannabinoid combinations containing a higher proportion of CBD. These findings support the notion that the administration of TMZ together with THC:CBD combinations – and specifically those containing a higher proportion of CBD – may be therapeutically explored to target the population of GICs in GBM.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids in cancer treatment: Therapeutic potential and legislation.

Bosnian Journal of Basic Medical Sciences

“The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids.

The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes.

Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer.

In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite.

In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types.

Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries.

In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration.

Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients.

The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer.

Image result for frontiers in pharmacology

“Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors.

Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth in vivo.

Cannabidiol (CBD), a phytocannabinoid derived from Cannabis sativa, has anti-inflammatory and anti-oxidant properties, and displays anti-proliferative activity.

Here we report a novel role for CBD as a potent inhibitor of EMV release from three cancer cell lines: prostate cancer (PC3), hepatocellular carcinoma (HEPG2) and breast adenocarcinoma (MDA-MB-231).

CBD significantly reduced exosome release in all three cancer cell lines, and also significantly, albeit more variably, inhibited microvesicle release.

The EMV modulating effects of CBD were found to be dose dependent (1 and 5 μM) and cancer cell type specific. Moreover, we provide evidence that this may be associated with changes in mitochondrial function, including modulation of STAT3 and prohibitin expression, and that CBD can be used to sensitize cancer cells to chemotherapy.

We suggest that the known anti-cancer effects of CBD may partly be due to the regulatory effects on EMV biogenesis, and thus CBD poses as a novel and safe modulator of EMV-mediated pathological events.”

https://www.ncbi.nlm.nih.gov/pubmed/30150937

https://www.frontiersin.org/articles/10.3389/fphar.2018.00889/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Optimization Of A Preclinical Therapy Of Cannabinoids In Combination With Temozolomide Against Glioma.

 Biochemical Pharmacology “Glioblastoma multiforme (GBM) is the most frequent and aggressive form of brain cancer. These features are explained at least in part by the high resistance exhibited by these tumors to current anticancer therapies. Thus, the development of novel therapeutic approaches is urgently needed to improve the survival of the patients suffering this devastating disease.

Δ9-Tetrahydrocannabinol (THC, the major active ingredient of marijuana), and other cannabinoids have been shown to exert antitumoral actions in animal models of cancer, including glioma. The mechanism of these anticancer actions relies, at least in part, on the ability of these compounds to stimulate autophagy-mediated apoptosis in tumor cells.

Previous observations from our group demonstrated that local administration of THC (or of THC + CBD at a 1:1 ratio, a mixture that resembles the composition of the cannabinoid-based medicine Sativex®) in combination with Temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

With the aim of optimizing the possible clinical utilization of cannabinoids in anti-GBM therapies, in this work we explored the anticancer efficacy of the systemic administration of cannabinoids in combination with TMZ in preclinical models of glioma.

Our results show that oral administration of THC+CBD (Sativex-like extracts) in combination with TMZ produces a strong antitumoral effect in both subcutaneous and intracranial glioma cell-derived tumor xenografts. In contrast, combined administration of Sativex-like and BCNU (another alkylating agent used for the treatment of GBM which share structural similarities with the TMZ) did not show a stronger effect than individual treatments.

Altogether, our findings support the notion that the combined administration of TMZ and oral cannabinoids could be therapeutically exploited for the management of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30125556

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303496

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus.

European Journal of Medicinal Chemistry

“Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes – both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence.

Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail.

The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes’ medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others.

Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-tumoural actions of cannabinoids.

British Journal of Pharmacology banner

“The endocannabinoid system has emerged as a considerable target for the treatment of diverse diseases.

In addition to the well-established palliative effects of cannabinoids in cancer therapy, phytocannabinoids, synthetic cannabinoid compounds as well as inhibitors of endocannabinoid degradation have attracted attention as possible systemic anticancer drugs.

As a matter of fact, accumulating data from preclinical studies suggest cannabinoids elicit effects on different levels of cancer progression, comprising inhibition of proliferation, neovascularisation, invasion and chemoresistance, induction of apoptosis and autophagy as well as enhancement of tumour immune surveillance.

Although the clinical use of cannabinoid receptor ligands is limited by their psychoactivity, nonpsychoactive compounds, such as cannabidiol, have gained attention due to preclinically established anticancer properties and a favourable risk-to-benefit profile.

Thus, cannabinoids may complement the currently used collection of chemotherapeutics, as a broadly diversified option for cancer treatment, while counteracting some of their severe side effects.” https://www.ncbi.nlm.nih.gov/pubmed/30019449

“During the last few decades, a large body of evidence has accumulated to suggest endocannabinoids, phytocannabinoids and synthetic cannabinoids exert an inhibitory effect on cancer growth via blockade of cell proliferation and induction of apoptosis. Some studies support the hypothesis that cannabinoids may enhance immune responses against the progressive growth and spread of tumours.”  https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14426#bph14426-fig-0001
“Previous research has shown that cannabinoids can help lessen side effects of anti-cancer therapies. Now a new British Journal of Pharmacology review has examined their potential for the direct treatment of cancer. Studies have shown that cannabinoids may stop cancer cells from dividing and invading normal tissue, and they may block the blood supply to tumors. Some studies also indicate that cannabinoids may enhance the body’s immune response against the growth and spread of tumors.” https://www.eurasiareview.com/19072018-cannabinoids-may-have-a-vast-array-of-anti-cancer-effects/
“Cannabinoids may have a vast array of anti-cancer effects” https://www.sciencedaily.com/releases/2018/07/180718082143.htm

“Cannabinoids may have a vast array of anti-cancer effects”  https://www.eurekalert.org/pub_releases/2018-07/w-cmh071718.php

Marijuana may help fight cancer” https://nypost.com/2018/07/18/marijuana-may-help-fight-cancer/

“Cannabis stops cancer spreading and boosts immune system, say scientists. Studies show cannabinoids can stop cancer cells from dividing and spreading, and blocks blood supply to tumours” https://www.plymouthherald.co.uk/news/health/cannabis-can-cure-cancer-proof-1803485
“Cannabis stops cancer spreading and boosts immune system, say scientists. Cannabis can act as a treatment for cancer and boost the immune system, claims a new study.” https://www.devonlive.com/news/health/cannabis-can-cure-cancer-proof-1803485
“Cannabis stops cancer spreading and boosts immune system, say scientists. Cannabis can act as a treatment for cancer and boost the immune system, claims a new study.” https://www.cornwalllive.com/news/uk-world-news/cannabis-can-cure-cancer-proof-1803485
Cannabis ‘can act as a treatment for cancer’. Cannabis can enhance the immune system and act as a treatment for cancer, claims a new study. Scientists at Rostock University Medical Centre in Germany claimed the benefits following a review of more than 100 studies.” https://www.thelondoneconomic.com/news/cannabis-can-act-as-a-treatment-for-cancer/19/07/
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous