INSIGHT ON THE IMPACT OF ENDOCANNABINOID SYSTEM IN CANCER: A REVIEW.

British Journal of Pharmacology banner

“In the last decades, the endocannabinoid system has attracted a great interest in medicine and cancer disease is probably one of its most promising therapeutic areas.

On the one hand, endocannabinoid system expression has been found altered in numerous types of tumours compared to healthy tissue, and this aberrant expression has been related to cancer prognosis and disease outcome, suggesting a role of this system in tumour growth and progression that depends on cancer type.

On the other hand, it has been reported that cannabinoids exert an anticancer activity by inhibiting the proliferation, migration and/or invasion of cancer cells; and also tumour angiogenesis.

The endocannabinoid system may be considered as a new therapeutic target, although further studies to fully establish the effect of cannabinoids on tumour progression remain necessary.”

https://www.ncbi.nlm.nih.gov/pubmed/29663308

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The use of cannabis in supportive care and treatment of brain tumor

Issue Cover

“Anticancer Effects of Cannabinoids may be able to Prolong Life.

Cannabinoids are multitarget substances. Currently available are dronabinol (synthetic delta-9-tetrahydrocannabinol, THC), synthetic cannabidiol (CBD) the respective substances isolated and purified from cannabis, a refined extract, nabiximols (THC:CBD = 1.08:1.00); and nabilone, which is also synthetic and has properties that are very similar to those of THC.

Cannabinoids have a role in the treatment of cancer as palliative interventions against nausea, vomiting, pain, anxiety, and sleep disturbances. THC and nabilone are also used for anorexia and weight loss, whereas CBD has no orexigenic effect. The psychotropic effects of THC and nabilone, although often undesirable, can improve mood when administered in low doses. CBD has no psychotropic effects; it is anxiolytic and antidepressive.

Of particular interest are glioma studies in animals where relatively high doses of CBD and THC demonstrated significant regression of tumor volumes (approximately 50% to 95% and even complete eradication in rare cases). Concomitant treatment with X-rays or temozolomide enhanced activity further. Similarly, a combination of THC with CBD showed synergistic effects. Although many questions, such as on optimized treatment schedules, are still unresolved, today’s scientific results suggest that cannabinoids could play an important role in palliative care of brain tumor patients.

THC, a partial CB1, CB2 agonist, has the stigma of psychotropic effects that are mediated by CB1 stimulation. However, CB1 stimulation is necessary for improving mood and appetite and many other effects. At present, it is hard to imagine a better approach than adjusting THC doses individually to balance wanted versus unwanted effects. Generally, higher doses are needed to achieve analgesic and antiemetic effects. Even much higher, supraphysiologic oral doses would be needed to combat tumors.

Combinations were synergistic under many circumstances such as in pain and antitumor studies. Cannabinoids differ in their antitumor activities and probably in their mechanisms and targets, which is a rationale for combinations. However, for many pharmacological effects (except against tumors) roughly 10-times higher daily doses are needed for CBD compared to THC.

In summary, the endocannabinoid system is likely playing a crucial role in palliative care. The future will show whether an optimized treatment strategy with cannabinoids can also prolong life of brain tumor patients by their virtue to combat cancer cells.”

https://academic.oup.com/nop/article/4/3/151/2918616

“Cannabinoid Drug Prolongs the Life of Brain Tumor Patients in Phase II Trials”  https://labiotech.eu/gw-pharmaceuticals-brain-tumor/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Ajulemic acid: potential treatment for chronic inflammation.

Pharmacology Research & Perspectives banner

“Ajulemic acid (AJA, CT-3, IP-751, JBT-101, anabasum) is a first-in-class, synthetic, orally active, cannabinoid-derived drug that preferentially binds to the CB2 receptor and is nonpsychoactive.

In preclinical studies, and in Phase 1 and 2 clinical trials, AJA showed a favorable safety, tolerability, and pharmacokinetic profile. It also demonstrated significant efficacy in preclinical models of inflammation and fibrosis. It suppresses tissue scarring and stimulates endogenous eicosanoids that resolve chronic inflammation and fibrosis without causing immunosuppression.

AJA is currently being developed for use in 4 separate but related indications including systemic sclerosis (SSc), cystic fibrosis, dermatomyositis (DM), and systemic lupus erythematosus. Phase 2 clinical trials in the first 3 targets demonstrated that it is safe, is a potential treatment for these orphan diseases and appears to be a potent inflammation-resolving drug with a unique mechanism of action, distinct from the nonsteroidal anti-inflammatory drug (NSAID), and will be useful for treating a wide range of chronic inflammatory diseases.

It may be considered to be a disease-modifying drug unlike most NSAIDs that only provide symptomatic relief. AJA is currently being evaluated in 24-month open-label extension studies in SSc and in skin-predominant DM. A Phase 3 multicenter trial to demonstrate safety and efficacy in SSc has recently been initiated.”

“Ajulemic acid, a synthetic cannabinoid acid, induces an antiinflammatory profile of eicosanoids in human synovial cells.”  http://www.ncbi.nlm.nih.gov/pubmed/18840450

“Ajulemic acid (CT3): a potent analog of the acid metabolites of THC.”  https://www.ncbi.nlm.nih.gov/pubmed/10903396

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid Type 1 Receptors are Upregulated During Acute Activation of Brown Adipose Tissue.

Diabetes

“Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans.

Obesity is associated with up-regulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and decrease cardiometabolic risk factors. These effects may partly be mediated via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents.

To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography (PET) radioligand [18F]FMPEP-d2 , and in parallel measured BAT activation with the glucose analogue [18F]FDG. Activation by cold exposure markedly increased CB1R density and glucose uptake in BAT of lean men. Similarly, β3-receptor agonism increased CB1R density in BAT of rats.

In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes.

Our results highlight that CB1Rs are significant for human BAT activity, and the CB1R provide a novel therapeutic target for BAT activation in humans.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System, Aggression, and the Violence of Synthetic Cannabinoid Use, Borderline Personality Disorder, Antisocial Personality Disorder, and Other Psychiatric Disorders

Image result for frontiers in behavioral neuroscience

“While most human research has concluded that the active ingredient of marijuana, Δ9-tetrahydrocannabinol, tends to dampen rather than provoke aggression in acute doses, recent evidence supports a relationship between the ingestion of synthetic cannabinoids and emergence of violent or aggressive behavior.

To summarize, this paper will draw upon basic and clinical research to explain how the endocannabinoid system may contribute to the genesis of aggressive behavior.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic cannabinoids in multiple sclerosis: immunomodulation revisited.

Publication cover image

Cannabinoids are compounds with pleiotropic properties that act on the cannabinoid receptors, CB1 and CB2, and are divided into endocannabinoids, the endogenous ligands of these receptors, synthetic cannabinoids and phytocannabinoids.

The latter are derived from the plant Cannabis sativa. The therapeutic and psychoactive properties of this plant have been observed and used for centuries.

Of the over 60 compounds that are unique to Cannabis sativa, the substances that have been attributed the greatest therapeutic potential are Δ9 – tetrahydrocannabinol (THC) and cannabidiol (CBD), both of which, used alone or combined with each other, have become approved drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/29633480

https://onlinelibrary.wiley.com/doi/abs/10.1111/ene.13658

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-inflammatory properties of cannabidiol, a non-psychotropic cannabinoid, in experimental allergic contact dermatitis.

Journal of Pharmacology and Experimental Therapeutics

“Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation.

Cannabinoid type-2 (CB2) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD).

We investigated if non-psychotropic cannabinoids like cannabidiol (CBD) produced similar effects in this experimental model of ACD.

This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid System and Migraine Pain: An Update.

 Image result for frontiers in neuroscience

“The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS.

Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache.

Clinical observations, in particular, show that the levels of anandamide (AEA)-one of the two primary endocannabinoid lipids-are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord.

AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors.

Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.”

https://www.ncbi.nlm.nih.gov/pubmed/29615860

https://www.frontiersin.org/articles/10.3389/fnins.2018.00172/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation.

 

Image result for Horm Mol Biol Clin Investig

“The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena.

In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving.

Moreover, cannabinoid agonists are able to reduce inflammatory response.

In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made.

Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Inhibition of fatty acid amide hydrolase by PF-3845 alleviates the nitrergic and proinflammatory response in rat hippocampus following acute stress.

Image result for International Journal of Neuropsychopharmacology

“Long term exposure to stress has been demonstrated to cause neuroinflammation through a sustained overproduction of free radicals, including nitric oxide, via an increased inducible nitric oxide synthase (iNOS) activity.

Similar to nitric oxide, endocannabinoids are synthesised on demand, with preclinical observations suggesting that cannabinoid receptor agonists and endocannabinoid enhancers inhibit nitrergic activity.

RESULTS:

The results demonstrate that pre-treatment with PF-3845 rapidly ameliorates plasma corticosterone release at 60 minutes of stress. An increase in endocannabinoid signalling also induces an overall attenuation in iNOS, tumor necrosis factor-alpha convertase, interleukin-6, cyclooxygenase-2, peroxisome proliferator-activated receptor gamma mRNA, and the transactivation potential of NF-κB in the hippocampus.

CONCLUSIONS:

These results suggest that enhanced endocannabinoid levels in the dorsal hippocampus have an overall anti-nitrosative and anti-inflammatory effect following acute stress exposure.”

“Inhibition of fatty acid amide hydrolase (FAAH) potentiates endocannabinoid activity and is hypothesized to have therapeutic potential for mood and anxiety disorders and pain”  https://www.ncbi.nlm.nih.gov/pubmed/29575526
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous