Cannabidiol in Medical Marijuana: Research Vistas and Potential Opportunities.

Cover image

“The high and increasing prevalence of medical marijuana consumption in the general population invites the need for quality evidence regarding its safety and efficacy. Herein, we synthesize extant literature pertaining to the phytocannabinoid cannabidiol (CBD) and its brain effects.

The principle phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) and CBD are the major pharmacologically active cannabinoids. The effect of CBD on brain systems as well as on phenomenological measures (e.g. cognitive function) are distinct and in many cases opposite to that of Δ9-THC.

Cannabidiol is without euphoriant properties, and exerts antipsychotic, anxiolytic, anti-seizure, as well as anti-inflammatory properties.

It is essential to parcellate phytocannabinoids into their constituent moieties as the most abundant cannabinoid have differential effects on physiologic systems in psychopathology measures. Disparate findings and reports related to effects of cannabis consumption reflect differential relative concentration of Δ9-THC and CBD.

Existing literature, notwithstanding its deficiencies, provides empirical support for the hypothesis that CBD may exert beneficial effects on brain effector systems/substrates subserving domain-based phenomenology. Interventional studies with purified CBD are warranted with a call to target-engagement proof-of-principle studies using the research domain criteria (RDoC) framework.” https://www.ncbi.nlm.nih.gov/pubmed/28501518

http://www.sciencedirect.com/science/article/pii/S1043661817303559

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Affects MK-801-Induced Changes in the PPI Learned Response of Capuchin Monkeys (Sapajus spp.).

Image result for Front Pharmacol.

“There are several lines of evidence indicating a possible therapeutic action of cannabidiol (CBD) in schizophrenia treatment.

Studies with rodents have demonstrated that CBD reverses MK-801 effects in prepulse inhibition (PPI) disruption, which may indicate that CBD acts by improving sensorimotor gating deficits.

In the present study, we investigated the effects of CBD on a PPI learned response of capuchin monkeys (Sapajus spp.).

A total of seven monkeys were employed in this study. In Experiment 1, we evaluated the CBD (doses of 15, 30, 60 mg/kg, i.p.) effects on PPI. In Experiment 2, the effects of sub-chronic MK-801 (0.02 mg/kg, i.m.) on PPI were challenged by a CBD pre-treatment.

No changes in PPI response were observed after CBD-alone administration. However, MK-801 increased the PPI response of our animals.

CBD pre-treatment blocked the PPI increase induced by MK-801.

Our findings suggest that CBD’s reversal of the MK-801 effects on PPI is unlikely to stem from a direct involvement on sensorimotor mechanisms, but may possibly reflect its anxiolytic properties.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model.

Image result for neuropsychopharmacology journal

“Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required.

Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties, however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction.

CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model, did not affect total body weight gain, food or water intake, and had no effect in control animals.

In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection.

These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/28230072

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice.

Image result for Mol Psychiatry

“Cannabis-induced acute psychotic-like states (CIAPS) represent a growing health issue, but their underlying neurobiological mechanisms are poorly understood.

The use of antipsychotics and benzodiazepines against CIAPS is limited by side effects and/or by their ability to tackle only certain aspects of psychosis. Thus, safer wide-spectrum treatments are currently needed.

Although the blockade of cannabinoid type-1 receptor (CB1) had been suggested as a therapeutical means against CIAPS, the use of orthosteric CB1 receptor full antagonists is strongly limited by undesired side effects and low efficacy.

The neurosteroid pregnenolone has been recently shown to act as a potent endogenous allosteric signal-specific inhibitor of CB1 receptors. Thus, we tested in mice the potential therapeutic use of pregnenolone against acute psychotic-like effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis.

We found that pregnenolone blocks a wide spectrum of THC-induced endophenotypes typically associated with psychotic-like states, including impairments in cognitive functions, somatosensory gating and social interaction. Overall, this work reveals that signal-specific inhibitors mimicking pregnenolone effects can be considered as promising new therapeutic tools to treat CIAPS.”  https://www.ncbi.nlm.nih.gov/pubmed/28220044

“Pregnenolone can protect the brain from cannabis intoxication. The administration of the main active principle of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057431/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neuronal and Molecular Effects of Cannabidiol on the Mesolimbic Dopamine System: Implications for Novel Schizophrenia Treatments.

Image result for Neuroscience & Biobehavioral Reviews

“Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders.

In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties.

However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties.

Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties.

This review summarizes clinical and pre-clinical evidence demonstrating CBD’s modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT1A receptor system, and their downstream molecular signaling effects.

Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates.”

https://www.ncbi.nlm.nih.gov/pubmed/28185872

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptors on peripheral leukocytes from patients with schizophrenia: Evidence for defective immunomodulatory mechanisms.

Image result for journal of psychiatric research

“These results suggest a defective endocannabinoid system-mediated immunomodulation in patients with schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/28011441

http://www.thctotalhealthcare.com/category/schizophrenia/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Decreased CB receptor binding and cannabinoid signaling in three brain regions of a rat model of schizophrenia.

Image result for Neurosci Lett

“Schizophrenia is a serious mental health disorder characterized by several behavioral and biochemicel abnormalities.

In a previous study we have shown that mu-opioid (MOP) receptor signaling is impaired in specific brain regions of our three-hit animal model of schizophrenia. Since the cannabinoid system is significantly influenced in schizophrenic patients, in the present work we investigated cannabinoid (CB) receptor binding and G-protein activation in cortical, subcortical and cerebellar regions of control and ‘schizophrenic’ rats.

Taken together, in all three brain areas of model rats both cannabinoid receptor binding and cannabinoid agonist-mediated G-protein activation were regularly decreased.

Our results revealed that besides the opioids, the endocannabinoid – cannabis receptor system also shows impairment in our rat model, increasing its face validity and translational utility.”

https://www.ncbi.nlm.nih.gov/pubmed/27639959

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia.

Image result for neuroscience & biobehavioral reviews

“Cognitive impairment is a core symptom domain of schizophrenia, neurological disorders and substance abuse. It is characterised by deficits in learning, memory, attention and executive functioning and can severely impact daily living.

Antipsychotic drugs prescribed to treat schizophrenia provide limited cognitive benefits and novel therapeutic targets are required. Cannabidiol (CBD), a component of the cannabis plant, has anti-inflammatory and antipsychotic-like properties; however, its ability to improve cognitive impairment has not been thoroughly explored. The aim of this systematic review was to evaluate preclinical and clinical literature on the effects of CBD in cognitive domains relevant to schizophrenia.

CBD improves cognition in multiple preclinical models of cognitive impairment, including models of neuropsychiatric (schizophrenia), neurodegenerative (Alzheimer’s disease), neuro-inflammatory (meningitis, sepsis and cerebral malaria) and neurological disorders (hepatic encephalopathy and brain ischemia). To-date, there is one clinical investigation into the effects of CBD on cognition in schizophrenia patients, with negative results for the stroop test. CBD attenuates Δ9-THC-induced cognitive deficits.

 

The efficacy of CBD to improve cognition in schizophrenia cannot be elucidated due to lack of clinical evidence; however, given the ability of CBD to restore cognition in multiple studies of impairment, further investigation into its efficacy in schizophrenia is warranted. Potential mechanisms underlying the efficacy of CBD to improve cognition are discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/27884751

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence

Logo of frontpharmacol

“There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds.

The endocannabinoid system has been suggested to represent a potential new target in this indication.

Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys.

After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile.

As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations.

The antipsychotic potential of cannabidiol has been investigated in various behavioral paradigms and different animal models of aspects of schizophrenia.

Although the results were partially inconsistent, they indicate that cannabidiol treatment ameliorates impairments of PPI, social interaction behavior and cognition in rodents and rhesus monkeys.

In addition, individual treatment attempts as well as one randomized, double-blind clinical study, demonstrated the antipsychotic potential of cannabidiol and its superior side effect profile compared to conventional antipsychotics. In addition, a recently conducted clinical trial investigating cannabidiol as an add-on medication showed promising results, although these have not yet been published in a peer reviewed process.

Obviously more clinical trials are needed to substantiate the current findings, and in particular to investigate long-term efficacy and safety in larger cohorts.

However, cannabidiol seems to represent a mechanistically different and less side-effect prone antipsychotic compound for the treatment of schizophrenia, even though the underlying pharmacological mechanisms are still under debate.

Nevertheless, the association between increased anandamide levels and reduced psychotic symptoms in schizophrenic patients treated with cannabidiol, points to a potentially new antipsychotic mechanism of action involving anandamide.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099166/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting the Endocannabinoid System in Psychiatric Illness.

Image result for J Clin Psychopharmacol

“Prevalence of psychiatric disorders continues to rise globally, yet remission rates and patient outcome remain less than ideal. As a result, novel treatment approaches for these disorders are necessary to decrease societal economic burden, as well as increase individual functioning.

The recent discovery of the endocannabinoid system has provided an outlet for further research into its role in psychiatric disorders, because efficacy of targeted treatments have been demonstrated in medical illnesses, including cancers, neuropathic pain, and multiple sclerosis.

The present review will investigate the role of the endocannabinoid system in psychiatric disorders, specifically schizophrenia, depressive, anxiety, and posttraumatic stress disorders, as well as attention-deficit hyperactivity disorder.

Controversy remains in prescribing medicinal cannabinoid treatments due to the fear of adverse effects. However, one must consider all potential limitations when determining the safety and tolerability of cannabinoid products, specifically cannabinoid content (ie, Δ-tetrahydrocannabinol vs cannabidiol) as well as study design.

The potential efficacy of cannabinoid treatments in the psychiatric population is an emerging topic of interest that provides potential value going forward in medicine.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous