The therapeutic potential of purified cannabidiol

pubmed logo

“The use of cannabidiol (CBD) for therapeutic purposes is receiving considerable attention, with speculation that CBD can be useful in a wide range of conditions. Only one product, a purified form of plant-derived CBD in solution (Epidiolex), is approved for the treatment of seizures in patients with Lennox-Gastaut syndrome, Dravet syndrome, or tuberous sclerosis complex. Appraisal of the therapeutic evidence base for CBD is complicated by the fact that CBD products sometimes have additional phytochemicals (like tetrahydrocannabinol (THC)) present, which can make the identification of the active pharmaceutical ingredient (API) in positive studies difficult. The aim of the present review is to critically review clinical studies using purified CBD products only, in order to establish the upcoming indications for which purified CBD might be beneficial.

The areas in which there is the most clinical evidence to support the use of CBD are in the treatment of anxiety (positive data in 7 uncontrolled studies and 17 randomised controlled trials (RCTs)), psychosis and schizophrenia (positive data in 1 uncontrolled study and 8 RCTs), PTSD (positive data in 2 uncontrolled studies and 4 RCTs) and substance abuse (positive data in 2 uncontrolled studies and 3 RCTs). Seven uncontrolled studies support the use of CBD to improve sleep quality, but this has only been verified in one small RCT. Limited evidence supports the use of CBD for the treatment of Parkinson’s (3 positive uncontrolled studies and 2 positive RCTs), autism (3 positive RCTs), smoking cessation (2 positive RCTs), graft-versus-host disease and intestinal permeability (1 positive RCT each). Current RCT evidence does not support the use of purified oral CBD in pain (at least as an acute analgesic) or for the treatment of COVID symptoms, cancer, Huntington’s or type 2 diabetes.

In conclusion, published clinical evidence does support the use of purified CBD in multiple indications beyond epilepsy. However, the evidence base is limited by the number of trials only investigating the acute effects of CBD, testing CBD in healthy volunteers, or in very small patient numbers. Large confirmatory phase 3 trials are required in all indications.”

https://pubmed.ncbi.nlm.nih.gov/37312194/

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00186-9

State Cannabis Legalization and Psychosis-Related Health Care Utilization

JAMA editors name the journal's best articles of the decade | American  Medical Association

“Importance: Psychosis is a hypothesized consequence of cannabis use. Legalization of cannabis could therefore be associated with an increase in rates of health care utilization for psychosis.

Objective: To evaluate the association of state medical and recreational cannabis laws and commercialization with rates of psychosis-related health care utilization.

Design, setting, and participants: Retrospective cohort design using state-level panel fixed effects to model within-state changes in monthly rates of psychosis-related health care claims as a function of state cannabis policy level, adjusting for time-varying state-level characteristics and state, year, and month fixed effects. Commercial and Medicare Advantage claims data for beneficiaries aged 16 years and older in all 50 US states and the District of Columbia, 2003 to 2017 were used. Data were analyzed from April 2021 to October 2022.

Exposure: State cannabis legalization policies were measured for each state and month based on law type (medical or recreational) and degree of commercialization (presence or absence of retail outlets).

Main outcomes and measures: Outcomes were rates of psychosis-related diagnoses and prescribed antipsychotics.

Results: This study included 63 680 589 beneficiaries followed for 2 015 189 706 person-months. Women accounted for 51.8% of follow-up time with the majority of person-months recorded for those aged 65 years and older (77.3%) and among White beneficiaries (64.6%). Results from fully-adjusted models showed that, compared with no legalization policy, states with legalization policies experienced no statistically significant increase in rates of psychosis-related diagnoses (medical, no retail outlets: rate ratio [RR], 1.13; 95% CI, 0.97-1.36; medical, retail outlets: RR, 1.24; 95% CI, 0.96-1.61; recreational, no retail outlets: RR, 1.38; 95% CI, 0.93-2.04; recreational, retail outlets: RR, 1.39; 95% CI, 0.98-1.97) or prescribed antipsychotics (medical, no retail outlets RR, 1.00; 95% CI, 0.88-1.13; medical, retail outlets: RR, 1.01; 95% CI, 0.87-1.19; recreational, no retail outlets: RR, 1.13; 95% CI, 0.84-1.51; recreational, retail outlets: RR, 1.14; 95% CI, 0.89-1.45). In exploratory secondary analyses, rates of psychosis-related diagnoses increased significantly among men, people aged 55 to 64 years, and Asian beneficiaries in states with recreational policies compared with no policy.

Conclusions and relevance: In this retrospective cohort study of commercial and Medicare Advantage claims data, state medical and recreational cannabis policies were not associated with a statistically significant increase in rates of psychosis-related health outcomes. As states continue to introduce new cannabis policies, continued evaluation of psychosis as a potential consequence of state cannabis legalization may be informative.”

https://pubmed.ncbi.nlm.nih.gov/36696111/

“In this retrospective cohort study of commercial and Medicare Advantage claims data, state medical and recreational cannabis policies were not associated with a statistically significant increase in rates of psychosis-related health outcomes.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2800728

Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models

genes-logo

“Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.”

https://pubmed.ncbi.nlm.nih.gov/36421839/

https://www.mdpi.com/2073-4425/13/11/2165

Incidence and Predictors of Cannabis-Related Poisoning and Mental and Behavioral Disorders among Patients with Medical Cannabis Authorization: A Cohort Study

Publication Cover

“Objective: As medical cannabis use increases in North America, establishing its safety profile is a priority. The objective of this study was to assess rates of emergency department (ED) visits and hospitalizations due to poisoning by cannabis, and cannabis-related mental health disorders among medically authorized cannabis patients in Ontario, Canada, between 2014 and 2017.

Methods: This is a retrospective cohort study of patients who received medical cannabis authorization in Ontario, Canada, using data collected in participating cannabis clinics. Outcomes included ED visit/hospitalization with a main diagnosis code for: cannabis/cannabinoid poisoning; and mental/behavioral disorders due to cannabis use. Cox proportional hazard regressions were utilized to analyze the data.

Results: From 29,153 patients who received medical authorization, 23,091 satisfied the inclusion criteria. During a median follow-up of 240 days, 14 patients visited the ED or were hospitalized for cannabis poisoning-with an incidence rate of 8.06 per 10,000 person-years (95% CI: 4.8-13.6). A total of 26 patients visited the ED or were hospitalized for mental and behavioral disorders due to cannabis use-with an incidence rate of 15.0 per 10,000 person-years (95% CI: 10.2-22.0). Predictors of cannabis-related mental and behavioral disorders include prior substance use disorders, other mental disorders, age, diabetes, and chronic obstructive pulmonary disease.

Conclusions: The results suggest that the incidence of cannabis poisoning or cannabis-related mental and behavioral disorders was low among patients who were authorized to use cannabis for medical care. Identified predictors can help to target patients with potential risk of the studied outcomes.”

https://pubmed.ncbi.nlm.nih.gov/35866679/

https://www.tandfonline.com/doi/abs/10.1080/10826084.2022.2102193?journalCode=isum20

Inducing Effects of Illegal Drugs to Improve Mental Health by Self-Regulation Therapy: A Pilot Study

ijerph-logo“This study consists of a brief psychological intervention, which uses Self-Regulation Therapy (SRT, procedure based on suggestion and classical conditioning), to improve coping with stress and emotionality by reproducing the positive effects of illegal drugs: cannabis, cocaine, ecstasy.

Results: SRT was superior to non-intervention for the 4 coping strategies (η2 = 0.829, 0.453, 0.411 and 0.606) and for positive (η2 = 0.371) and negative emotionality (η2 = 0.419). An improvement in scores was evidenced in the follow-up scores compared to the pre-intervention measures.

Conclusions: This study shows for the first time that it is possible to use illegal drugs, considered harmful to public health, to improve young people’s coping capacity and emotionality by reproducing their positive effects with SRT.”

https://pubmed.ncbi.nlm.nih.gov/34639687/

https://www.mdpi.com/1660-4601/18/19/10387

A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis

Archive of "Frontiers in Psychiatry".“”Medicinal cannabis” is defined as the use of cannabis-based products for the treatment of an illness. Investigations of cannabis compounds in psychiatric and neurological illnesses primarily focus on the major cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), which are hypothesised to benefit multiple illnesses manifesting cognitive impairment, neurodegeneration and neuro-inflammation, as well as chronic pain, epilepsy and post-traumatic stress disorder, respectively.

The cannabis plant contains >500 compounds, including terpenes responsible for the flavour and fragrance profiles of plants. Recently, research has begun providing evidence on the potential use of certain plant-derived terpenes in modern medicine, demonstrating anti-oxidant, anti-inflammatory, and neuroprotective effects of these compounds.

This review examined the effects of two key terpenes, pinene and linalool, on parameters relevant to neurological and psychiatric disorders, highlighting gaps in the literature and recommendations for future research into terpene therapeutics.

Overall, evidence is mostly limited to preclinical studies and well-designed clinical trials are lacking. Nevertheless, existing data suggests that pinene and linalool are relevant candidates for further investigation as novel medicines for illnesses, including stroke, ischemia, inflammatory and neuropathic pain (including migraine), cognitive impairment (relevant to Alzheimer’s disease and ageing), insomnia, anxiety, and depression.

Linalool and pinene influence multiple neurotransmitter, inflammatory and neurotrophic signals as well as behaviour, demonstrating psycho-activity (albeit non-intoxicating).   Optimising the phytochemical profile of cannabis chemovars to yield therapeutic levels of beneficial terpenes and cannabinoids, such as linalool, pinene and CBD, could present a unique opportunity to discover novel medicines to treat psychiatric and neurological illnesses; however, further research is needed.”

https://pubmed.ncbi.nlm.nih.gov/34512404/

“Overall, it appears that the importance of the terpene profile of plants to humans extends further than mere olfactory and gustatory delight. Rather, these compounds have the potential for use as treatments for serious chronic neurological and psychiatric illnesses.”

https://www.frontiersin.org/articles/10.3389/fpsyt.2021.583211/full

Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment

ijms-logo“Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes.

The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson’s disease, Tourette’s syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors.

The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.”

https://pubmed.ncbi.nlm.nih.gov/33466734/

https://www.mdpi.com/1422-0067/22/2/778

Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders

biomolecules-logo“The potential therapeutic use of some Cannabis sativa plant compounds has been attracting great interest, especially for managing neuropsychiatric disorders due to the relative lack of efficacy of the current treatments.

Numerous studies have been carried out using the main phytocannabinoids, tetrahydrocannabinol (THC) and cannabidiol (CBD). CBD displays an interesting pharmacological profile without the potential for becoming a drug of abuse, unlike THC.

In this review, we focused on the anxiolytic, antidepressant, and antipsychotic effects of CBD found in animal and human studies. In rodents, results suggest that the effects of CBD depend on the dose, the strain, the administration time course (acute vs. chronic), and the route of administration. In addition, certain key targets have been related with these CBD pharmacological actions, including cannabinoid receptors (CB1r and CB2r), 5-HT1A receptor and neurogenesis factors.

Preliminary clinical trials also support the efficacy of CBD as an anxiolytic, antipsychotic, and antidepressant, and more importantly, a positive risk-benefit profile. These promising results support the development of large-scale studies to further evaluate CBD as a potential new drug for the treatment of these psychiatric disorders.”

https://pubmed.ncbi.nlm.nih.gov/33228239/

https://www.mdpi.com/2218-273X/10/11/1575

A single dose of cannabidiol modulates medial temporal and striatal function during fear processing in people at clinical high risk for psychosis

 Translational Psychiatry“Emotional dysregulation and anxiety are common in people at clinical high risk for psychosis (CHR) and are associated with altered neural responses to emotional stimuli in the striatum and medial temporal lobe.

Using a randomised, double-blind, parallel-group design, 33 CHR patients were randomised to a single oral dose of CBD (600 mg) or placebo. Healthy controls (n = 19) were studied under identical conditions but did not receive any drug. Participants were scanned with functional magnetic resonance imaging (fMRI) during a fearful face-processing paradigm. Activation related to the CHR state and to the effects of CBD was examined using a region-of-interest approach.

During fear processing, CHR participants receiving placebo (n = 15) showed greater activation than controls (n = 19) in the parahippocampal gyrus but less activation in the striatum. Within these regions, activation in the CHR group that received CBD (n = 15) was intermediate between that of the CHR placebo and control groups.

These findings suggest that in CHR patients, CBD modulates brain function in regions implicated in psychosis risk and emotion processing. These findings are similar to those previously evident using a memory paradigm, suggesting that the effects of CBD on medial temporal and striatal function may be task independent.”

https://pubmed.ncbi.nlm.nih.gov/32921794/

“This study is the first to demonstrate that a single dose of CBD modulates activation of the medial temporal cortex and striatum during fear processing in CHR patients. In showing that CBD modulates function of the neural circuitry directly implicated in psychosis onset, these results add to previous evidence that CBD may be a promising novel therapeutic for patients at CHR. Our results also support further investigation of the potential utility of CBD outside of the CHR field in other populations, such as in those with anxiety.”

https://www.nature.com/articles/s41398-020-0862-2

The Pro-neurogenic Effects of Cannabidiol and Its Potential Therapeutic Implications in Psychiatric Disorders

Archive of "Frontiers in Behavioral Neuroscience". “During the last decades, researchers have investigated the functional relevance of adult hippocampal neurogenesis in normal brain function as well as in the pathogenesis of diverse psychiatric conditions.

Although the underlying mechanisms of newborn neuron differentiation and circuit integration have yet to be fully elucidated, considerable evidence suggests that the endocannabinoid system plays a pivotal role throughout the processes of adult neurogenesis. Thus, synthetic, and natural cannabinoid compounds targeting the endocannabinoid system have been utilized to modulate the proliferation and survival of neural progenitor cells and immature neurons.

Cannabidiol (CBD), a constituent of the Cannabis Sativa plant, interacts with the endocannabinoid system by inhibiting fatty acid amide hydrolase (FAAH) activity (the rate-limiting enzyme for anandamide hydrolysis), allosterically modulating CB1 and CB2 receptors, and activating components of the “extended endocannabinoid system.” Congruently, CBD has shown prominent pro-neurogenic effects, and, unlike Δ9-tetrahydrocannabinol, it has the advantage of being devoid of psychotomimetic effects.

Here, we first review pre-clinical studies supporting the facilitating effects of CBD on adult hippocampal neurogenesis and available data disclosing cannabinoid mechanisms by which CBD can induce neural proliferation and differentiation. We then review the respective implications for its neuroprotective, anxiolytic, anti-depressant, and anti-reward actions.

In conclusion, accumulating evidence reveals that, in rodents, adult neurogenesis is key to understand the behavioral manifestation of symptomatology related to different mental disorders. Hence, understanding how CBD promotes adult neurogenesis in rodents could shed light upon translational therapeutic strategies aimed to ameliorate psychiatric symptomatology dependent on hippocampal function in humans.”

https://pubmed.ncbi.nlm.nih.gov/32676014/

https://www.frontiersin.org/articles/10.3389/fnbeh.2020.00109/full