Cannabidiol Regulates Gene Expression in Encephalitogenic T cells Using Histone Methylation and noncoding RNA during Experimental Autoimmune Encephalomyelitis.

 Scientific Reports“Cannabidiol (CBD) has been shown by our laboratory to attenuate experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).

In this study, we used microarray and next generation sequencing (NGS)-based approaches to determine whether CBD would alter genome-wide histone modification and gene expression in MOG sensitized lymphocytes.

In summary, this study demonstrates that CBD suppresses inflammation through multiple mechanisms, from histone methylation to miRNA to lncRNA.”

https://www.ncbi.nlm.nih.gov/pubmed/31673072

“Marijuana (Cannabis sativa) has many biologically active compounds and its medicinal value has been known for centuries. CBD has been shown to have an anti-inflammatory effect in several animal models. In immune system, studies from our lab as well as those from others have shown that both THC and CBD have anti-inflammatory properties. ”

https://www.nature.com/articles/s41598-019-52362-8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hemp seed/evening primrose oil affects expression of STAT3, IL-17, and FOXP3+ in experimental autoimmune encephalomyelitis.

Research in Pharmaceutical Sciences“T helper (Th)-17 mediate inflammation in both peripheral tissues and the central nervous system. Signal transducer and activator of transcription factor3 (STAT3) is required for Th-cell pathogenicity and its activation in the brain has been demonstrated during the acute phase of experimental autoimmune encephalomyelitis (EAE) through the mammalian target of rapamycin (mTOR) signaling. Rapamycin (RAPA), an inhibitor of mTOR, can drive Forkhead box P3 (FOXP3+) induction as a regulatory factor.

The aim of this study was to determine the effects of hemp seed/evening primrose oils (HSO/EPO) supplement on the expression of FOXP3+, STAT3, and interleukin (IL)-17 genes in EAE lymph nodes.

EAE was induced by myelin oligodendrocyte glycoprotein peptide in mice, and then the mice were assigned to three treatment groups compared to two control groups (EAE and naive). The histological findings of the spinal cord were evaluated. To determine the expression of FOXP3+, STAT3, and IL-17 genes in the lymphocytes, qRT-PCR was used.

Our results showed that EAE severity was reduced in HSO/EPO mice by reducing the expression of STAT3 and IL-17 genes and increasing the expression of FOXP3+ gene, which was confirmed by slight inflammation in the spinal cord. Histological findings showed a significant improvement in the HSO/EPO group.

Our findings suggest that the HSO/EPO treatment can be used to ameliorate the demyelination of spinal cord, which was confirmed by immunological and histological findings.”

https://www.ncbi.nlm.nih.gov/pubmed/31620191

http://www.rpsjournal.net/article.asp?issn=1735-5362;year=2019;volume=14;issue=2;spage=146;epage=154;aulast=Rezapour%2DFirouzi

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways.

 Image result for frontiers in immunology“Multiple sclerosis (MS) is a chronic and disabling disorder of the central nervous system (CNS) characterized by neuroinflammation leading to demyelination.

Recently a combination of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) extracted from Cannabis has been approved in many parts of the world to treat MS-related spasticity. THC+CBD combination was also shown to suppresses neuroinflammation, although the mechanisms remain to be further elucidated.

In the current study, we demonstrate that THC+CBD combination therapy (10 mg/kg each) but not THC or CBD alone, attenuates murine experimental autoimmune encephalomyelitis (EAE) by reducing neuroinflammation and suppression of Th17 and Th1 cells.

Collectively, this study suggests that combination of THC+CBD suppresses neuroinflammation and attenuates clinical EAE development and that this effect is associated with changes in miRNA profile in brain-infiltrating cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31497013

“Combination of THC+CBD has been used to treat human MS. This treatment is known to decrease not only muscle spasticity but also suppress neuroinflammation.”

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01921/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome.

Brain, Behavior, and Immunity“Currently, a combination of marijuana cannabinoids including delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is used as a drug to treat muscle spasticity in patients with Multiple Sclerosis (MS).

Because these cannabinoids can also suppress inflammation, it is unclear whether such patients benefit from suppression of neuroinflammation and if so, what is the mechanism through which cannabinoids act.

In the currently study, we used a murine model of MS, experimental autoimmune encephalomyelitis (EAE), to study the role of gut microbiota in the attenuation of clinical signs of paralysis and inflammation caused by cannabinoids.

THC+CBD treatment attenuated EAE and caused significant decrease in inflammatory cytokines such as IL-17 and IFN-γ while promoting the induction of anti-inflammatory cytokines such as IL-10 and TGF-β. Use of 16S rRNA sequencing on bacterial DNA extracted from the gut revealed that EAE mice showed high abundance of mucin degrading bacterial species, such as Akkermansia muciniphila (A.muc), which was significantly reduced after THC+CBD treatment.

Fecal Material Transfer (FMT) experiments confirmed that THC+CBD-mediated changes in the microbiome play a critical role in attenuating EAE. In silico computational metabolomics revealed that LPS biosynthesis, a key component in gram-negative bacteria such as A.muc, was found to be elevated in EAE mice which was confirmed by demonstrating higher levels of LPS in the brain, while treatment with THC+CBD reversed this trend. EAE mice treated with THC+CBD also had significantly higher levels of short chain fatty acids such as butyric, isovaleric, and valeric acids compared to naïve or disease controls.

Collectively, our data suggest that cannabinoids may attenuate EAE and suppress neuroinflammation by preventing microbial dysbiosis seen during EAE and promoting healthy gut microbiota.”

https://www.ncbi.nlm.nih.gov/pubmed/31356922

https://www.sciencedirect.com/science/article/pii/S0889159119306476?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic impact of orally administered cannabinoid oil extracts in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis.

Biochemical and Biophysical Research Communications“There is a growing surge of investigative research involving the beneficial use of cannabinoids as novel interventional alternatives for multiple sclerosis (MS) and associated neuropathic pain (NPP).

Using an experimental autoimmune encephalomyelitis (EAE) animal model of MS, we demonstrate the therapeutic effectiveness of two cannabinoid oil extract formulations (10:10 & 1:20 – tetrahydrocannabinol/cannabidiol) treatment.

Our research findings confirm that cannabinoid treatment produces significant improvements in neurological disability scoring and behavioral assessments of NPP that directly result from their ability to reduce tumor necrosis factor alpha (TNF-α) production and enhance brain derived neurotrophic factor (BDNF) production.

Henceforth, this research represents a critical step in advancing the literature by scientifically validating the merit for medical cannabinoid use and sets the foundation for future clinical trials.”

https://www.ncbi.nlm.nih.gov/pubmed/31213295

“Cannabinoid treatment produces improvements in neurological disability scoring. Cannabinoid treatment also improves behavioral assessments of neuropathic pain.”

https://www.sciencedirect.com/science/article/pii/S0006291X19311568?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Avidekel Cannabis extracts and cannabidiol are as efficient as Copaxone in suppressing EAE in SJL/J mice.

“Multiple sclerosis (MS) is an autoimmune disease leading to the destruction of myelin with consequent axonal degeneration and severe physical debilitation. The disease can be treated with immunosuppressive drugs that alleviate the symptoms and retard disease aggravation. One such drug in clinical use is glatiramer acetate (Copaxone).

The non-psychotropic immunosuppressive cannabinoid compound cannabidiol (CBD) has recently been shown to have beneficial effects on experimental autoimmune encephalomyelitis (EAE). The aim of our study was to compare the efficacy of CBD and standardized extracts from a CBD-rich, ∆9-THClow Cannabis indica subspecies (Avidekel) with that of Copaxone.

Our data show that CBD and purified Avidekel extracts are as efficient as Copaxone to alleviate the symptoms of proteolipid protein (PLP)-induced EAE in SJL/J mice. No synergistic effect was observed by combining CBD or Avidekel extracts with Copaxone.

Our data support the use of Avidekel extracts in the treatment of MS symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/30291491

https://link.springer.com/article/10.1007%2Fs10787-018-0536-3

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells.

Image result for frontiers in immunology

“Multiple sclerosis (MS) is a chronic debilitating autoimmune disease without a cure. While the use of marijuana cannabinoids for MS has recently been approved in some countries, the precise mechanism of action leading to attenuate neuroinflammation is not clear. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory properties of cannabidiol (CBD), a non-psychoactive cannabinoid. Treatment with CBD caused attenuation of EAE disease paradigms as indicated by a significant reduction in clinical scores of paralysis, decreased T cell infiltration in the central nervous system, and reduced levels of IL-17 and IFNγ. Interestingly, CBD treatment led to a profound increase in myeloid-derived suppressor cells (MDSCs) in EAE mice when compared to the vehicle-treated EAE controls. These MDSCs caused robust inhibition of MOG-induced proliferation of T cells in vitro. Moreover, adoptive transfer of CBD-induced MDSCs ameliorated EAE while MDSC depletion reversed the beneficial effects of CBD treatment, thereby conclusively demonstrating that MDSCs played a crucial role in CBD-mediated attenuation of EAE. Together, these studies demonstrate for the first time that CBD treatment may ameliorate EAE through induction of immunosuppressive MDSCs.”

https://www.ncbi.nlm.nih.gov/pubmed/30123217

“In conclusion, we have demonstrated that the mitigation of EAE with CBD comes from its ability to target a range of anti-inflammatory pathways, including (i) induction of anti-inflammatory MDSCs and (ii) decrease in pro-inflammatory and induction of anti-inflammatory cytokines. Because CBD is non-psychoactive, our studies suggest that CBD may constitute an excellent candidate for the treatment of MS and other autoimmune diseases. Our studies provide further evidence of the importance of MDSCs and that manipulation of such cells may constitute novel therapeutic modality to treat MS and other autoimmune diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2018.01782/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis.

Current Protocols in Toxicology

“Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one’s ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE.”

https://www.ncbi.nlm.nih.gov/pubmed/29512125

http://onlinelibrary.wiley.com/doi/10.1002/cptx.43/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The inhibition of CB1 receptor accelerates the onset and development of EAE possibly by regulating microglia/macrophages polarization.

Journal of Neuroimmunology

“Cannabinoid 1 receptor (CB1R) regulates the neuro-inflammatory and neurodegenerative damages of experimental autoimmune encephalomyelitis (EAE) and of multiple sclerosis (MS). The mechanism by which CB1R inhibition exerts inflammatory effects is still unclear. Here, we explored the cellular and molecular mechanisms of CB1R in the treatment of EAE by using a specific and selective CB1R antagonist SR141716A. Our study demonstrated that SR141716A accelerated the clinical onset and development of EAE, accompanied by body weight loss. SR141716A significantly up-regulated the expression of toll like receptor-4 (TLR-4) and nuclear factor-kappaB/p65 (NF-κB/p65) on microglia/macrophages of EAE mice as well as levels of inflammatory factors (TNF-α, IL-1β, IL-6) and chemokines (MCP-1, CX3CL1), accompanied by the shifts of cytokines from Th2 (IL-4, IL-10) to Th1 (IFN-γ)/Th17 (IL-17) in the spinal cords of EAE mice. Similar changes happened on splenic mononuclear cells (MNCs) except chemokine CX3CL1. Consistently, SR141716A promoted BV-2 microglia to release inflammatory factors (TNF-α, IL-1β, IL-6) while inhibited the production of IL-10 and chemokines (MCP-1, CX3CL1). Furthermore, when splenic CD4+ T cells co-cultured with SR141716A-administered BV-2 microglia, the levels of IL-4 and IL-10 were decreased while production of IL-17 and IFN-γ increased significantly. Our research indicated that inhibition of CB1R induced M1 phenotype-Th17 axis changed of microglia/macrophages through TLR-4 and NF-κB/p65 which accelerated the onset and development of EAE. Therefore, CB1R may be a promising target for the treatment of MS/EAE, but its complexity remains to be carefully considered and studied in further clinical application.”

https://www.ncbi.nlm.nih.gov/pubmed/29501084

http://www.jni-journal.com/article/S0165-5728(17)30467-8/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice.

British Journal of Pharmacology

“Cannabis extracts and several cannabinoids have been shown to exert broad anti-inflammatory activities in experimental models of inflammatory CNS degenerative diseases.

Clinical use of many cannabinoids is limited by their psychotropic effects. However, phytocannabinoids like cannabidiol (CBD), devoid of psychoactive activity, are, potentially, safe and effective alternatives for alleviating neuroinflammation and neurodegeneration.

Treatment with CBD during disease onset ameliorated the severity of the clinical signs of EAE.

CBD, a non-psychoactive cannabinoid, ameliorates clinical signs of EAE in mice, immunized against MOG. Suppression of microglial activity and T-cell proliferation by CBD appeared to contribute to these beneficial effects.”

https://www.ncbi.nlm.nih.gov/pubmed/21449980

“In summary, we have shown that CBD administered to MOG-immunized C57BL/6 mice, at the onset of EAE disease, reduced the severity of the clinical signs of EAE. CBD treatment was accompanied by diminished axonal loss and inflammation (infiltration of T cells and microglial activation). Moreover, CBD prevented proliferation of myelin-specific T cells in vitro. These observations suggest that CBD may have potential for alleviating MS-like pathology.” http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01379.x/full

“Study Shows Cannabidiol (CBD) Improves MS-Like Symptoms”  http://www.prohealth.com/library/showarticle.cfm?libid=31211

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous