Opportunities for cannabis in supportive care in cancer.

 Related image“Cannabis has the potential to modulate some of the most common and debilitating symptoms of cancer and its treatments, including nausea and vomiting, loss of appetite, and pain.

However, the dearth of scientific evidence for the effectiveness of cannabis in treating these symptoms in patients with cancer poses a challenge to clinicians in discussing this option with their patients. A review was performed using keywords related to cannabis and important symptoms of cancer and its treatments.

Literature was qualitatively reviewed from preclinical models to clinical trials in the fields of cancer, human immunodeficiency virus (HIV), multiple sclerosis, inflammatory bowel disease, post-traumatic stress disorder (PTSD), and others, to prudently inform the use of cannabis in supportive and palliative care in cancer.

There is a reasonable amount of evidence to consider cannabis for nausea and vomiting, loss of appetite, and pain as a supplement to first-line treatments. There is promising evidence to treat chemotherapy-induced peripheral neuropathy, gastrointestinal distress, and sleep disorders, but the literature is thus far too limited to recommend cannabis for these symptoms.

Scant, yet more controversial, evidence exists in regard to cannabis for cancer- and treatment-related cognitive impairment, anxiety, depression, and fatigue. Adverse effects of cannabis are documented but tend to be mild.

Cannabis has multifaceted potential bioactive benefits that appear to outweigh its risks in many situations. Further research is required to elucidate its mechanisms of action and efficacy and to optimize cannabis preparations and doses for specific populations affected by cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31413731

https://journals.sagepub.com/doi/10.1177/1758835919866362

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management

Journal of Cancer Research and Therapeutics“Cannabis was extensively utilized for its medicinal properties till the 19th century. A steep decline in its medicinal usage was observed later due to its emergence as an illegal recreational drug.

Advances in technology and scientific findings led to the discovery of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis, that further led to the discovery of endogenous cannabinoids system consisting of G-protein-coupled receptors – cannabinoid receptor 1 and cannabinoid receptor 2 along with their ligands, mainly anandamide and 2-arachidonoylglycerol.  Endocannabinoid (EC) is shown to be a modulator not only for physiological functions but also for the immune system, endocrine network, and central nervous system.

Medicinal research and meta-data analysis over the last few decades have shown a significant potential for both THC and cannabidiol (CBD) to exert palliative effects. People suffering from many forms of advanced stages of cancers undergo chemotherapy-induced nausea and vomiting followed by severe and chronic neuropathic pain and weight loss.

THC and CBD exhibit effective analgesic, anxiolytic, and appetite-stimulating effect on patients suffering from cancer. Drugs currently available in the market to treat such chemotherapy-induced cancer-related ailments are Sativex (GW Pharmaceutical), Dronabinol (Unimed Pharmaceuticals), and Nabilone (Valeant Pharmaceuticals).

Apart from exerting palliative effects, THC also shows promising role in the treatment of cancer growth, neurodegenerative diseases (multiple sclerosis and Alzheimer’s disease), and alcohol addiction and hence should be exploited for potential benefits.

The current review discusses the nature and role of CB receptors, specific applications of cannabinoids, and major studies that have assessed the role of cannabinoids in cancer management.

Specific targeting of cannabinoid receptors can be used to manage severe side effects during chemotherapy, palliative care, and overall cancer management. Furthermore, research evidences on cannabinoids have suggested tumor inhibiting and suppressing properties which warrant reconsidering legality of the substance.

Studies on CB1 and CB2 receptors, in case of cancers, have demonstrated the psychoactive constituents of cannabinoids to be potent against tumor growth.

Interestingly, studies have also shown that activation of CB1 and CB2 cannabinoid receptors by their respective synthetic agonists tends to limit human cancer cell growth, suggesting the role of the endocannabinoid system as a novel target for treatment of cancers.

Further explorations are required to exploit cannabinoids for an effective cancer management.”

http://www.cancerjournal.net/preprintarticle.asp?id=263538

“Could Cannabis Kill Cancer Cells? A New Study Looks Promising”  https://www.portlandmercury.com/blogtown/2019/08/15/26977361/could-cannabis-kill-cancer-cells-a-new-study-looks-promising

“Study Reviews How Marijuana Compounds Inhibit Tumor Growth And Kill Cancer Cells” https://www.marijuanamoment.net/study-reviews-how-marijuana-compounds-inhibit-tumor-growth-and-kill-cancer-cells/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Urgent need for “EBMM” in pediatric oncology: Evidence based medical marijuana.

Publication Cover“Marijuana has been used by many different civilizations for numerous different purposes, including its use for medical indications. Recently, there has been significant media coverage of the efficacy of medical marijuana in the treatment of seizures in children with Dravet syndrome, and this has led many to search for other possible pediatric indications for cannabinoids, including many different indications in pediatric cancer. However, there is very little evidence on safety or efficacy of cannabinoids in children being treated with cancer. This commentary accompanies a recent paper by a group in Israel who have published their experience of medical marijuana in 50 children and adolescents with cancer, showing excellent satisfaction and better symptom control, and without significant adverse drug reactions. This study from Israel is an excellent first step, but prospective well-designed trials of medical marijuana in pediatric oncology are urgently needed.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Acute Activation of the CB1 Receptor in the Hippocampus Decreases Neurotoxicity and Prevents Spatial Memory Impairment in Rats Lesioned with β-Amyloid 25-35.

Neuroscience“Given their anti-inflammatory properties, cannabinoids have been shown to be neuroprotective agents and to reduce excitotoxicity, through the activation of the Cannabinoid receptor type 1 (CB1r).

These properties have led to CB1r being proposed as pharmacological targets for the treatment of various neurodegenerative diseases.

This study aimed to evaluate the neuroprotective effect of an acute activation of CB1r on spatial memory and its impact on iNOS protein expression, NO● levels, gliosis and the neurodegenerative process induced by the injection of Aβ(25-35) into the CA1 subfield of the hippocampus.

The data obtained in the present research suggest that the acute early activation of CB1r is crucial for neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/31400487

https://www.sciencedirect.com/science/article/abs/pii/S0306452219305433?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Flavonoid Derivative of Cannabis Demonstrates Therapeutic Potential in Preclinical Models of Metastatic Pancreatic Cancer.

Image result for frontiers oncology“Pancreatic cancer is particularly refractory to modern therapies, with a 5-year survival rate for patients at a dismal 8%.

One of the significant barriers to effective treatment is the immunosuppressive pancreatic tumor microenvironment and development of resistance to treatment. New treatment options to increase both the survival and quality of life of patients are urgently needed.

This study reports on a new non-cannabinoid, non-psychoactive derivative of cannabis, termed FBL-03G, with the potential to treat pancreatic cancer.

In vitro results show major increase in apoptosis and consequential decrease in survival for two pancreatic cancer models- Panc-02 and KPC pancreatic cancer cells treated with varying concentrations of FBL-03G and radiotherapy.

Meanwhile, in vivo results demonstrate therapeutic efficacy in delaying both local and metastatic tumor progression in animal models with pancreatic cancer when using FBL-03G sustainably delivered from smart radiotherapy biomaterials.

Repeated experiments also showed significant (P < 0.0001) increase in survival for animals with pancreatic cancer compared to control cohorts.

The findings demonstrate the potential for this new cannabis derivative in the treatment of both localized and advanced pancreatic cancer, providing impetus for further studies toward clinical translation.”

https://www.ncbi.nlm.nih.gov/pubmed/31396485

“In this study, a flavonoid derivative of cannabis demonstrates significant therapy potential in the treatment of pancreatic cancer, including radio-sensitizing and cancer metastasis treatment potential. The results justify further studies to optimize therapy outcomes toward clinical translation.”

https://www.frontiersin.org/articles/10.3389/fonc.2019.00660/full

“Flavonoids as anticancer agents: structure-activity relationship study.”  https://www.ncbi.nlm.nih.gov/pubmed/12678721

“The antitumor activities of flavonoids.”  https://www.ncbi.nlm.nih.gov/pubmed/16097445

“Anticancer properties of flavonoids: roles in various stages of carcinogenesis.”  https://www.ncbi.nlm.nih.gov/pubmed/21644918

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The safety, tolerability, and effectiveness of PTL-101, an oral cannabidiol formulation, in pediatric intractable epilepsy: A phase II, open-label, single-center study.

“Several works have reported on the antiepileptic impact of cannabis-based preparations in patients with treatment-resistant epilepsy (TRE). However, current formulations suffer from low bioavailability and side effects. PTL-101, an oral formulation containing highly purified cannabidiol (CBD) embedded in seamless gelatin matrix beadlets was designed to enhance bioavailability and maintain a constant gastrointestinal transit time.

RESULTS:

Sixteen patients (age: 9.1±3.4) enrolled in the study; 11 completed the full treatment program. The average maintenance dose was 13.6±4.2mg/kg. Patient adherence to treatment regimens was 96.3±9.9%. By the end of the treatment period, 81.9% and 73.4±24.6% (p<0.05) reductions from baseline median seizure count and monthly seizure frequency, respectively, were recorded. Responders’ rate was 56%; two patients became fully seizure-free. By study end, 8 (73%) caregivers reported an improved/very much improved condition, and 9 (82%) reported reduced/very much reduced seizure severity. Most commonly reported treatment-related adverse effects were sleep disturbance/insomnia, (4 (25.0%) patients), followed by somnolence, increased seizure frequency, and restlessness (3 patients each (18.8%)). None were serious or severe, and all resolved.

CONCLUSIONS:

PTL-101 was safe and tolerable for use and demonstrated a potent seizure-reducing effect among pediatric patients with TRE.”

https://www.ncbi.nlm.nih.gov/pubmed/31394352

https://www.epilepsybehavior.com/article/S1525-5050(19)30305-1/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Is Cannabis of Potential Value as a Therapeutic for Inflammatory Bowel Disease?

“Cannabis is commonly used by patients with inflammatory bowel disease (IBD) to ameliorate their symptoms.

Patients claim that cannabis reduces pain, increases appetite, and reduces the need for other medications.

In conclusion, considering the mechanism of action of phytocannabinoids and the accumulating evidence of their anti-inflammatory effects in experimental and in vitro studies, it is reasonable to assume that cannabis can be of benefit in the treatment of IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31388856

https://link.springer.com/article/10.1007%2Fs10620-019-05763-8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor-1 antagonism: a new perspective on treating a murine schistosomal liver fibrosis model.

 SciELO - Scientific Electronic Library Online“Formation of schistosomal granulomata surrounding the ova can result in schistosomiasis-associated liver fibrosis (SSLF). The current standard of treatment is praziquantel (PZQ), which cannot effectively reverse SSLF.

The role of the cannabinoid (CB) receptor family in liver fibrosis has recently been highlighted.

This study aimed to assess the therapeutic effect of CB1 receptor antagonism in reversing SSLF in a murine model of Schistosoma mansoni infection.

MAIN CONCLUSIONS:

Combining PZQ with CB1 receptor antagonists yielded the best results in reversing SSLF. To our knowledge, this is the first study to test this regimen in S. mansoni infection.”

https://www.ncbi.nlm.nih.gov/pubmed/31389521

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762019000100338&tlng=en

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis and Epilepsy.

 Publication Cover“In recent years, the use of cannabidiol in the treatment of refractory epilepsy has been increasingly investigated and has been gaining public support as a novel way to treat these disorders.

Marijuana has been used for medical purposes for thousands of years, and a lot of research has been conducted over the last several decades into the chemistry and pharmacology of marijuana and its many compounds, including cannabidiol.

There are historical and recent scientific developments that support the use of cannabidiol in rare severe epilepsy syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/31385740

https://www.tandfonline.com/doi/abs/10.1080/15504263.2019.1645372?journalCode=wjdd20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Regulates the Expression of Keratinocyte Proteins Involved in the Inflammation Process through Transcriptional Regulation.

cells-logo “Cannabidiol (CBD), a natural phytocannabinoid without psychoactive effect, is a well-known anti-inflammatory and antioxidant compound.

The possibility of its use in cytoprotection of cells from harmful factors, including ultraviolet (UV) radiation, is an area of ongoing investigation. Therefore, the aim of this study was to evaluate the effect of CBD on the regulatory mechanisms associated with the redox balance and inflammation in keratinocytes irradiated with UVA [30 J/cm2] and UVB [60 mJ/cm2].

Spectrophotometric results show that CBD significantly enhances the activity of antioxidant enzymes such as superoxide dismutase and thioredoxin reductase in UV irradiated keratinocytes. Furthermore, despite decreased glutathione peroxidase and reductase activities, CBD prevents lipid peroxidation, which was observed as a decreased level of 4-HNE and 15d-PGJ2 (measured using GC/MS and LC/MS). Moreover, Western blot analysis of protein levels shows that, under stress conditions, CBD influences interactions of transcription factors Nrf2- NFκB by inhibiting the NFκB pathway, increasing the expression of Nrf2 activators and stimulating the transcription activity of Nrf2.

In conclusion, the antioxidant activity of CBD through Nrf2 activation as well as its anti-inflammatory properties as an inhibitor of NFκB should be considered during design of new protective treatments for the skin.”

https://www.ncbi.nlm.nih.gov/pubmed/31382646

https://www.mdpi.com/2073-4409/8/8/827

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous