Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity

Frontiers in Pharmacology welcomes new Field Chief Editor ...“Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury.

Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice.

While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs).

THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R.

Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.”

https://pubmed.ncbi.nlm.nih.gov/32612530/

“In summary, the current study suggests that treatment of mice with THC post-SEB challenge protects mice from SEB-mediated toxicity by inhibiting inflammation and ARDS through the modulation of miRs. Because SEB is a super antigen that drives cytokine storm, our studies suggest that THC is a potent anti-inflammatory agent that has the potential to be used as a therapeutic modality to treat SEB-induced ARDS.

It is of interest to note that a significant proportion of Coronavirus disease 2019 (COVID-19) patients come down with sepsis and ARDS accompanied by cytokine storm. ”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00893/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The pharmacokinetics, efficacy, and safety of a novel selective‐dose cannabis inhaler in patients with chronic pain: A randomized, double‐blinded, placebo‐controlled trial

European Journal of Pain“Precise cannabis treatment dosing remains a major challenge, leading to physicians’ reluctance to prescribe medical cannabis.

Objective

To test the pharmacokinetics, analgesic effect, cognitive performance and safety effects of an innovative medical device that enables the delivery of inhaled therapeutic doses of Δ9‐Tetrahydrocannabinol (THC) in patients with chronic pain.

Methods

In a randomized, three‐arms, double‐blinded, placebo‐controlled, cross‐over trial, 27 patients received a single inhalation of Δ9‐THC: 0.5mg, 1mg, or a placebo.

Δ9‐THC plasma levels were measured at baseline and up to 150‐min post‐inhalation. Pain intensity and safety parameters were recorded on a 10‐cm visual analogue scale (VAS) at pre‐defined time points. The cognitive performance was evaluated using the selective sub‐tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB).

Results

Following inhalation of 0.5 mg or 1mg, Δ9‐THC plasma max ± SD were 14.3 ± 7.7 and 33.8 ± 25.7 ng/ml. max ± SD were 3.7 ± 1.4 and 4.4 ± 2.1 min, and AUC0 → infinity±SD were 300 ± 144 and 769 ± 331 ng*min/ml, respectively. Both doses, but not the placebo, demonstrated a significant reduction in pain intensity compared with baseline and remained stable for 150‐min. The 1‐mg dose showed a significant pain decrease compared to the placebo. Adverse events were mostly mild and resolved spontaneously. There was no evidence of consistent impairments in cognitive performance.

Conclusion

This feasibility trial demonstrated that a metered‐dose cannabis inhaler delivered precise and low THC doses, produced a dose‐dependent and safe analgesic effect in patients with neuropathic pain/ complex‐regional pain syndrome (CRPS). Thus, it enables individualization of medical cannabis regimens that can be evaluated pharmacokinetically and pharmacodynamically by accepted pharmaceutical models.

Significance

Evidence suggests that cannabis‐based medicines are an effective treatment for chronic pain in adults. The pharmacokinetics of THC varies as a function of its route of administration. Pulmonary assimilation of inhaled THC causes rapid onset of analgesia. However, currently used routes of cannabinoids delivery provide unknown doses, making it impossible to implement a pharmaceutical standard treatment plan. A novel selective‐dose cannabis inhaler delivers significantly low and precise doses of THC, thus allowing the administration of inhaled cannabis‐based medicines according to high pharmaceutical standards. These low doses of THC can produce safe and effective analgesia in patients with chronic pain.

To the best of our knowledge, it is the first time that the delivery of selective, significantly low, and precise therapeutic single doses of inhaled THC demonstrates an analgesic effect. It allows patients to reach the optimum balance between symptom relief and controlled side effects, enabling patients to regain their quality of life. In addition, this metered‐dose cannabis inhaler enables the individualization of medical cannabis regimens that can be evaluated pharmacokinetically and pharmacodynamically using accepted pharmaceutical models.”

https://onlinelibrary.wiley.com/doi/10.1002/ejp.1605

Study Finds Microdosing THC Reduces Pain Levels”  https://www.painnewsnetwork.org/stories/2020/7/1/study-finds-microdosing-thc-reduces-pain-levels

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antioxidants Help Favorably Regulate the Kinetics of Lipid Peroxidation, Polyunsaturated Fatty Acids Degradation and Acidic Cannabinoids Decarboxylation in Hempseed Oil

 Scientific Reports“The seed of the hemp plant (Cannabis sativa L.) has been revered as a nutritional resource in Old World Cultures. This has been confirmed by contemporary science wherein hempseed oil (HSO) was found to exhibit a desirable ratio of omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) considered optimal for human nutrition. HSO also contains gamma-linoleic acid (GLA) and non-psychoactive cannabinoids, which further contribute to its’ potential bioactive properties. Herein, we present the kinetics of the thermal stability of these nutraceutical compounds in HSO, in the presence of various antioxidants (e.g. butylated hydroxytoluene, alpha-tocopherol, and ascorbyl palmitate). We focussed on oxidative changes in fatty acid profile and acidic cannabinoid stability when HSO was heated at different temperatures (25 °C to 85 °C) for upto 24 h. The fatty acid composition was evaluated using both GC/MS and 1H-NMR, and the cannabinoids profile of HSO was obtained using both HPLC-UV and HPLC/MS methods. The predicted half-life (DT50) for omega-6 and omega-3 PUFAs in HSO at 25 °C was about 3 and 5 days, respectively; while that at 85 °C was about 7 and 5 hours respectively, with respective activation energies (Ea) being 54.78 ± 2.36 and 45.02 ± 2.87 kJ/mol. Analysis of the conjugated diene hydroperoxides (CDH) and p-Anisidine value (p-AV) revealed that the addition of antioxidants significantly (p < 0.05) limited lipid peroxidation of HSO in samples incubated at 25-85 °C for 24 h. Antioxidants reduced the degradation constant (k) of PUFAs in HSO by upto 79%. This corresponded to a significant (p < 0.05) increase in color stability and pigment retention (chlorophyll a, chlorophyll b and carotenoids) of heated HSO. Regarding the decarboxylation kinetics of cannabidiolic acid (CBDA) in HSO, at both 70 °C and 85 °C, CBDA decarboxylation led to predominantly cannabidiol (CBD) production. The half-life of CBDA decarboxylation (originally 4 days) could be increased to about 17 days using tocopherol as an antioxidant. We propose that determining acidic cannabinoids decarboxylation kinetics is a useful marker to measure the shelf-life of HSO. The results from the study will be useful for researchers looking into the thermal treatment of hempseed oil as a functional food product, and those interested in the decarboxylation kinetics of the acidic cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/32601363/

https://www.nature.com/articles/s41598-020-67267-0

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Efficacy Independent of Clobazam: Meta-Analysis of Four Randomized-Controlled Trials

 Acta Neurologica ScandinavicaThe efficacy of cannabidiol (CBD) with and without concomitant clobazam (CLB) was evaluated in stratified analyses of four large randomized controlled trials, two in Lennox-Gastaut syndrome and two in Dravet syndrome.

Results: The meta-analysis favored CBD vs. placebo regardless of CLB use. The treatment ratio (95% CI) of CBD over placebo for the average reduction in seizure frequency was 0.59 (0.52, 0.68; p<0.0001) with CLB and 0.85 (0.73, 0.98; p=0.0226) without CLB, and the 50% responder rate odds ratio (95% CI) was 2.51 (1.69, 3.71; p<0.0001) with CLB and 2.40 (1.38, 4.16; p=0.0020) without CLB. Adverse events (AEs) related to somnolence, rash, pneumonia, or aggression were more common in patients with concomitant CLB. There was a significant exposure/response relationship for CBD and its active metabolite.

Conclusions: These results indicate CBD is efficacious with and without CLB, but do not exclude the possibility of a synergistic effect associated with the combination of agents. The safety and tolerability profile of CBD without CLB shows a lower rate of certain AEs than with CLB.”

https://pubmed.ncbi.nlm.nih.gov/32592183/

https://onlinelibrary.wiley.com/doi/abs/10.1111/ane.13305

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis, the Endocannabinoid System and Immunity-the Journey From the Bedside to the Bench and Back

ijms-logo“The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system.

While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited.

A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage.

Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders.

In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.”

https://pubmed.ncbi.nlm.nih.gov/32585801/

https://www.mdpi.com/1422-0067/21/12/4448

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Constituents Reduce Seizure Behavior in Chemically-Induced and scn1a-mutant Zebrafish

Epilepsy and Behavior Journal | Epilepsy Foundation“Current antiepileptic drugs (AEDs) are undesirable for many reasons including the inability to reduce seizures in certain types of epilepsy, such as Dravet syndrome (DS) where in one-third of patients does not respond to current AEDs, and severe adverse effects that are frequently experienced by patients.

Epidiolex, a cannabidiol (CBD)-based drug, was recently approved for treatment of DS. While Epidiolex shows great promise in reducing seizures in patients with DS, it is used in conjunction with other AEDs and can cause liver toxicity. To investigate whether other cannabis-derived compounds could also reduce seizures, the antiepileptic effects of CBD, Δ9-tetrahydrocannabinol (THC), cannabidivarin (CBDV), cannabinol (CBN), and linalool (LN) were compared in both a chemically-induced (pentylenetetrazole, PTZ) and a DS (scn1Lab-/-) seizure models.

Cannabidiol (0.6 and 1 μM) and THC (1 and 4 μM) significantly reduced PTZ-induced total distance moved. At the highest THC concentration, the significant reduction in PTZ-induced behavior was likely the result of sedation as opposed to antiseizure activity.

In the DS model, CBD (0.6 μM), THC (1 μM), CBN (0.6 and 1 μM), and LN (4 μM) significantly reduced total distance traveled. Cannabinol was the most effective at reducing total distance relative to controls. In addition to CBD, other cannabis-derived compounds showed promise in reducing seizure-like activity in zebrafish.

Specifically, four of the five compounds were effective in the DS model, whereas in the PTZ model, only CBD and THC were, suggesting a divergence in the mode of action among the cannabis constituents.”

https://pubmed.ncbi.nlm.nih.gov/32585475/

“In the DS model, CBD, THC, CBN, and LN caused significant reduction in seizure behavior, while THC and CBD were effective in both models.”

https://linkinghub.elsevier.com/retrieve/pii/S1525505020303310

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical Cannabis for the Management of Pain and Quality of Life in Chronic Pain Patients: A Prospective Observational Study

Pain Medicine (Journal) by Oxford University Press

“Objective: To evaluate the short-term and long-term effects of plant-based medical cannabis in a chronic pain population over the course of one year.

Results: Medical cannabis treatment was associated with improvements in pain severity and interference (P < 0.001) observed at one month and maintained over the 12-month observation period. Significant improvements were also observed in the SF-12 physical and mental health domains (P < 0.002) starting at three months. Significant decreases in headaches, fatigue, anxiety, and nausea were observed after initiation of treatment (P ≤ 0.002). In patients who reported opioid medication use at baseline, there were significant reductions in oral morphine equivalent doses (P < 0.0001), while correlates of pain were significantly improved by the end of the study observation period.

Conclusions: Taken together, the findings of this study add to the cumulative evidence in support of plant-based medical cannabis as a safe and effective treatment option and potential opioid medication substitute or augmentation therapy for the management of symptoms and quality of life in chronic pain patients.”

https://pubmed.ncbi.nlm.nih.gov/32556203/

https://academic.oup.com/painmedicine/article-abstract/doi/10.1093/pm/pnaa163/5859722?redirectedFrom=fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates

Journal of Pharmacology and Experimental Therapeutics“Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge.

Although cannabinergic medications have been used in certain treatment-resistant populations, FDA-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications.

The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg), against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys.

These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggests that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side-effect liability.

SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved anti-emetic pharmacotherapies has been impeded by a paucity of animal models.

The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid-analog methanandamide in nonhuman primates.”

https://pubmed.ncbi.nlm.nih.gov/32561684/

http://jpet.aspetjournals.org/content/early/2020/06/19/jpet.120.265710

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Experiences With Medical Cannabis in the Treatment of Veterans With PTSD: Results From a Focus Group Discussion

 European Neuropsychopharmacology“Posttraumatic stress disorder (PTSD) is an often chronic condition for which currently available medications have limited efficacy.

Medical cannabis is increasingly used to treat patients with PTSD; however, evidence for the efficacy and safety of cannabinoids is scarce. To learn more about patients’ opinions on and experiences with medical cannabis, we organized a focus group discussion among military veterans (N = 7) with chronic PTSD who were treated with medical cannabis. Afterwards, some of their partners (N = 4) joined the group for an evaluation, during which they shared their perspective on their partner’s use of medical cannabis.

Both sessions were audio-recorded, transcribed verbatim, and analyzed by means of qualitative content analysis. Five overarching themes were identified. The first four themes related to the different phases of medical cannabis use – namely, 1) Consideration; 2) Initiation; 3) Usage; and 4) Discontinuation. The fifth theme related to several general aspects of medical cannabis use.

Patients used medical cannabis to manage their symptoms and did not experience an urge to “get high.” They used a variety of different cannabis strains and dosages and reported several therapeutic effects, including an increased quality of sleep. Furthermore, discussions about the experienced stigma surrounding cannabis generated insights with implications for the initiation of medical cannabis use.

These results underscore the value of qualitative research in this field and are relevant for the design of future clinical trials on the use of medical cannabis for the treatment of PTSD.”

https://pubmed.ncbi.nlm.nih.gov/32576481/

“Reported therapeutic effects ranged from reduced anger and irritability to increased sleep quality and reductions in nightmares and night sweats.”

https://www.sciencedirect.com/science/article/pii/S0924977X20301280?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Extract for the Treatment of Painful Tonic Spasms in a Patient With Neuromyelitis Optica Spectrum Disorder: A Case Report

Multiple Sclerosis and Related Disorders | Journal | ScienceDirect.com“Painful tonic spasm (PTS) is a common yet debilitating symptom in patients with neuromyelitis optica spectrum disorder (NMOSD), especially those with longitudinally extensive transverse myelitis. Although carbamazepine is an effective treatment, it poses the risk of severe adverse reactions, such as Steven-Johnson syndrome (SJS).

In this case report, we describe an NMOSD patient with severe PTS suffering from carbamazepine-induced SJS who responded well to cannabis extract. Since cannabinoids can ameliorate spasticity in an experimental autoimmune encephalomyelitis model through cannabinoid 1 (CB1) receptor activation, cannabis extract which includes delta-9-tetrahydrocannabinol (THC) is a potential treatment option for PTS in NMOSD patients.”

https://pubmed.ncbi.nlm.nih.gov/32559701/

“A cannabis extract has been approved for spasticity in multiple sclerosis (MS). Cannabis extract is a potential treatment for PTS in NMOSD patients.”

https://www.msard-journal.com/article/S2211-0348(20)30354-0/pdf

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous