AM1241 alleviates MPTP-induced Parkinson’s disease and promotes the regeneration of DA neurons in PD mice.

Related image

“The main pathological feature of Parkinson’s disease (PD) is the loss of dopaminergic neurons in the substantia nigra. In this study, we investigated the role of cannabinoid receptor 2 (CB2R) agonist AM1241 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in a mouse model of PD. Upon treatment with AM1241, the decreased CB2R level in the PD mouse brain was reversed and the behavior score markedly elevated, accompanied with a dose-dependent increase of dopamine and serotonin. In addition, western blot assay and immunostaining results suggested that AM1241 significantly activated PI3K/Akt/MEK phosphorylation and increased the expression of Parkin and PINK1, both in the substantia nigra and hippocampus. The mRNA expression analysis further demonstrated that AM1241 increased expression of the CB2R and activated Parkin/PINK1 signaling pathways. Furthermore, the increased number of TH-positive cells in the substantia nigra indicated that AM1241 regenerated DA neurons in PD mice, and could therefore be a potential candidate for PD treatment. The clear co-localization of CB2R and DA neurons suggested that AM1241 targeted CB2R, thus also identifying a novel target for PD treatment. In conclusion, the selective CB2 agonist AM1241 has a significant therapeutic effect on PD mice and resulted in regeneration of DA neurons following MPTP-induced neurotoxicity. The possible mechanisms underlying the neurogenesis effect of AM1241 might be the induction of CB2R expression and an increase in phosphorylation of the PI3K/AKT signaling pathway.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoids exert CB1 receptor-mediated neuroprotective effects in models of neuronal damage induced by HIV-1 Tat protein.

Cover image

“In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids (eCBs) elicit neuroprotective and anti-inflammatory actions in several central nervous system (CNS) disease models, but their effects in HAND remain unknown. HIV-1 does not infect neurons, but produces viral toxins, such as transactivator of transcription (Tat), that disrupt neuronal calcium equilibrium and give rise to synaptodendritic injuries and cell death, the former being highly correlated with HAND. Consequently, we tested whether the eCBs N-arachidonoyl ethanolamine (anandamide/AEA) and 2-arachidonoyl-glycerol (2-AG) offer neuroprotective actions in a neuronal culture model. Specifically, we examined the neuroprotective actions of these eCBs on Tat excitotoxicity in primary cultures of prefrontal cortex neurons (PFC), and whether cannabinoid receptors mediate this neuroprotection. Tat-induced excitotoxicity was reflected by increased intracellular calcium levels, synaptodendritic damage, neuronal excitability, and neuronal death. Further, upregulation of cannabinoid 1 receptor (CB1R) protein levels was noted in the presence of HIV-1 Tat. The direct application of AEA and 2-AG reduced excitotoxic levels of intracellular calcium and promoted neuronal survival following Tat exposure, which was prevented by the CB1R antagonist rimonabant, but not by the CB2R antagonist AM630. Overall, our findings indicate that eCBs protect PFC neurons from Tat excitotoxicity in vitro via a CB1R-related mechanism. Thus, the eCB system possesses promising targets for treatment of neurodegenerative disorders associated with HIV-1 infection.”

https://www.ncbi.nlm.nih.gov/pubmed/28733129

http://www.sciencedirect.com/science/article/pii/S1044743117300830

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Amidoalkylindoles as Potent and Selective Cannabinoid Type 2 Receptor Agonists with In Vivo Efficacy in a Mouse Model of Multiple Sclerosis.

Journal of Medicinal Chemistry

“Selective CB2 agonists represent an attractive therapeutic strategy for the treatment of a variety of diseases without psychiatric side effects mediated by the CB1 receptor.

We carried out a rational optimization of a black market designer drug SDB-001 that led to the identification of potent and selective CB2 agonists. A 7-methoxy or 7-methylthio substitution at the 3-amidoalkylindoles resulted in potent CB2 antagonists (27 or 28, IC50 = 16-28 nM). Replacement of the amidoalkyls from 3-position to the 2-position of the indole ring dramatically increased the agonist selectivity on the CB2 over CB1 receptor. Particularly, compound 57 displayed a potent agonist activity on the CB2 receptor (EC50 = 114-142 nM) without observable agonist or antagonist activity on the CB1 receptor.

Furthermore, 57 significantly alleviated the clinical symptoms and protected the murine central nervous system from immune damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation.

European Journal of Pain

“This study investigated whether intramuscular injection of delta-9-tetrahydrocannabinol (THC), by acting on peripheral cannabinoid (CB) receptors, could decrease nerve growth factor (NGF)-induced sensitization in female rat masseter muscle; a model which mimics the symptoms of myofascial temporomandibular disorders.

It was found that CB1 and CB2 receptors are expressed by trigeminal ganglion neurons that innervate the masseter muscle and also on their peripheral endings.

These results suggest that reduced inhibitory input from the peripheral cannabinoid system may contribute to NGF-induced local myofascial sensitization of mechanoreceptors. Peripheral application of THC may counter this effect by activating the CB1 receptors on masseter muscle mechanoreceptors to provide analgesic relief without central side effects.

SIGNIFICANCE:

Our results suggest THC could reduce masticatory muscle pain through activating peripheral CB1 receptors. Peripheral application of cannabinoids could be a novel approach to provide analgesic relief without central side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/28722246

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1085/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Highly selective CB2 receptor agonist A836339 has gastroprotective effect on experimentally induced gastric ulcers in mice.

Naunyn-Schmiedeberg's Archives of Pharmacology

“Cannabinoid type 2 (CB2) receptors are distributed in central and peripheral tissues, including immunocytes and the gastrointestinal (GI) tract, suggesting that CB2 receptor agonists represent potential therapeutics in GI inflammatory states.

In this study, we investigated the effect of highly selective CB2 agonist, A836339, on the development of gastric lesions.

Activation of CB2 receptors exhibited gastroprotective effect through enhancement of anti-oxidative pathways in the stomach. Activation of CB2 receptors may thus become a novel therapeutic approach in the treatment of GU.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson’s Disease Induced by MPTP.

pharmaceuticals-logo

“Parkinson’s disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R). Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD.”  https://www.ncbi.nlm.nih.gov/pubmed/28684694

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Is a Potential Therapeutic for the Affective-Motivational Dimension of Incision Pain in Rats.

Image result for frontiers in pharmacology
“Drugs that interfere with the endocannabinoid system are alternatives for the management of clinical pain. Cannabidiol (CBD), a phytocannabinoid found in Cannabis sativa, has been utilized in preclinical and clinical studies for the treatment of pain. Herein, we evaluate the effects of CBD. The study provides evidence that CBD influences different dimensions of the response of rats to a surgical incision, and the results establish the rostral anterior cingulate cortex (rACC) as a brain area from which CBD evokes antinociceptive effects in a manner similar to the systemic administration of CBD. The present study has shown for the first time that CBD injected either systemically or into the rACC induces a long-lasting anti-allodynic effect with a bell-shaped dose-response curve in a rat model of incision pain.” https://www.ncbi.nlm.nih.gov/pubmed/28680401
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids as therapeutic for PTSD

Cover image

“Limited efficacy for current pharmacotherapy for PTSD indicates that improved pharmacological treatments are needed. Neurobiological research points to cannabinoids as possible therapeutic agents of interest. Moreover, observational reports indicate that there is growing popular interest in therapeutic use of cannabinoids for the alleviation of trauma symptoms. The aim of this review was to present an up-to-date look at current research on the possible therapeutic value of cannabinoids for PTSD. Experimental, preclinical, and clinical findings are discussed.

Highlights

Neurobiological research indicates cannabis as possible pharmacological intervention for PTSD.

CBD and THC + CBD modulate fear memory in rodents.

Experimental data suggest CBD has acute anti-depressive and anxiolytic effects.

Data suggest THC reduces nightmares and OSA, while THC + CBD could reduce insomnia.

Randomized placebo-controlled human trials of cannabinoids for PTSD are underway.”

http://www.sciencedirect.com/science/article/pii/S2352250X16302342

https://www.researchgate.net/publication/311949481_Cannabinoids_as_therapeutic_for_PTSD

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis as a Substitute for Opioid-Based Pain Medication: Patient Self-Report

“Prescription drug overdoses are the leading cause of accidental death in the United States. Alternatives to opioids for the treatment of pain are necessary to address this issue. Cannabis can be an effective treatment for pain, greatly reduces the chance of dependence, and eliminates the risk of fatal overdose compared to opioid-based medications. Medical cannabis patients report that cannabis is just as effective, if not more, than opioid-based medications for pain.

The results of this study provide implications from both a micro and macro level. First, from the macro level, there have been three previously published indicators of public health changes in states that permit medical cannabis: decreases in opioid related mortality, decreases in spending on opioids, and a decrease in traffic fatalities. While none of these studies shows a cause and effect relationship, they do suggest public health related population based changes in localities where cannabis can be accessed to treat pain. Given that the participants in this study reported a greater likelihood of using cannabis as a substitute in a less stigmatized and easily accessible environment, it makes sense why we would see these changes in locations where medical cannabis is sanctioned versus places where it is illegal.

At the micro level, there is a great deal of individual risk associated with prolonged use of opioids and perhaps even nonopioid-based pain medications. The prescribing of opioids has not been curbed in the United States, despite the growing number of fatal overdoses and reported dependence. Providing the patient with the option of cannabis as a method of pain treatment alongside the option of opioids might assist with pain relief in a safer environment with less risk. A society with less opioid dependent people will result in fewer public health harms.”

http://online.liebertpub.com/doi/10.1089/can.2017.0012

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The case for cannabinoid CB1 receptors as a target for bronchodilator therapy for β-agonist resistant asthma.

Image result for Curr Drug Targets

“Although b2-receceptor agonists are powerful bronchodilators and are at the forefront of asthma symptom relief, patients who use them frequently develop partial resistance to them. This can be a particularly serious problem during severe attacks, where high dose b2-agonist treatment is the front line therapy.

Alternative bronchodilators are urgently needed. In this article we review the evidence for the bronchodilator effects of the cannabinoid CB1 receptor tetrahydrocannabinol (THC) and suggest that the mechanism of action for these effects are sufficiently independent of the mechanisms of standard bronchodilators to warrant clinical investigation.

Specifically, clinical trials testing the bronchodilator effects of THC in b2 agonist resistant asthmatic patients would show whether THC could fill the role of rescue bronchodilator in cases of b2 agonist resistance.”  https://www.ncbi.nlm.nih.gov/pubmed/28641517

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous