Cannabis sativa L. essential oil: chemical characterisation and antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius

pubmed logo

“Cannabis sativa L. essential oil has attracted the interest of the scientific community thanks to its numerous biological activities. Several studies have evaluated EOs as alternative therapeutic approaches to limit the use of antibiotics; the present study aimed to evaluate the in vitro inhibitory and bactericidal activity of the essential oils obtained from the leaves and inflorescences of two hemp genotypes against twenty-one multidrug-resistant, methicillin-resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples.

Both EOs were mainly represented by sesquiterpene hydrocarbons, with a prevalence of β-caryophyllene and α-humulene. However, different relative amounts of phytocannabinoids were also detected. Microbiological results evidenced better outcomes for the EO characterised by the highest content of phytocannabinoids, which in turn showed no differences among the tested strains. Nevertheless, both the EOs showed better inhibitory and bactericidal activities than their main constituent, β-caryophyllene, tested individually, highlighting the presence of synergistic effects among the EO compounds.”

https://pubmed.ncbi.nlm.nih.gov/39229937/

https://www.tandfonline.com/doi/full/10.1080/14786419.2024.2398733

Long-term stability and bactericidal properties of galenic formulations of Cannabis sativa oils

pubmed logo

“The long-term stability in real and accelerated time for galenic oils based on full-spectrum cannabis has been studied, using sesame oil as a dilutant. Sesame oil is one of the most used vehicles in the cannabis pharmaceutical industry due to the costs and increased oral bioavailability of cannabinoids. The real-time assays conducted at 25 °C over twelve months demonstrated high stability and showed no significant changes in the composition of cannabinoids, total polyphenols, flavonoids, or antioxidant capacity. In these studies, it was observed that there was no development of microorganisms compromising the stability of the oils over a year. The three oil varieties exhibited a high bactericidal capacity against E. coli, S. aureus, and P. larvae.”

https://pubmed.ncbi.nlm.nih.gov/39025316/

Combinations of Cannabinoids with Silver Salts or Silver Nanoparticles for Synergistic Antibiotic Effects against Methicillin-Resistant Staphylococcus aureus

pubmed logo

“Silver has been shown to improve the antibiotic effects of other drugs against both Gram- positive and -negative bacteria. In this study, we investigated the antibiotic potential of cannabidiol (CBD), cannabichromene (CBC) and cannabigerol (CBG) and their acidic counterparts (CBDA, CBCA, CBGA) against Gram-positive bacteria and further explored the additive or synergistic effects of silver nitrate or silver nanoparticles using 96-well plate growth assays and viability (CFUs- colony-forming units).

All six cannabinoids had strong antibiotic effects against MRSA with minimal inhibitory concentrations (MICs) of 2 mg/L for CBG, CBD and CBCA; 4 mg/L for CBGA; and 8 mg/L for CBC and CBDA. Using 96-well checkerboard assays, CBC, CBG and CBGA showed full or partial synergy with silver nitrate; CBC, CBDA and CBGA were fully synergistic with silver nanoparticles against MRSA.

Using CFU assays, combinations of CBC, CBGA and CBG with either silver nitrate or silver nanoparticles, all at half or quarter MICs, demonstrated strong, time-dependent inhibition of bacterial growth (silver nitrate) and bactericidal effects (silver nanoparticles). These data will lead to further investigation into possible biomedical applications of specific cannabinoids in combination with silver salts or nanoparticles against drug-resistant Gram-positive bacteria.”

https://pubmed.ncbi.nlm.nih.gov/38927140/

“In conclusion, these studies confirm the antibiotic activity of CBG, CBC and CBD and the acidic forms of these agents against drug-resistant Gram-positive bacteria. The addition of silver, either as salts or nanoparticles, to select cannabinoids allows for much improved and, in some cases, synergistic antibiotic activity. Collectively, these findings strongly support further investigation of cannabinoid-enhanced silver preparations to assess their antimicrobial spectrum of activity and potential application in wound dressings or catheter coatings for an extended and more powerful antibiotic profile.”

https://www.mdpi.com/2079-6382/13/6/473

Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids

pubmed logo

“Hemp (Cannabis sativa L.) has been used for millennia as a rich source of food and fibers, whereas hemp flowers have only recently gained an increased market interest due to the presence of cannabinoids and volatile terpenes. Currently, the hemp flower processing industry predominantly focuses on either cannabinoid or terpene extraction.

In an attempt to maximize the valorization of hemp flowers, the current study aimed to evaluate the phytochemical composition and antimicrobial properties of several extracts obtained from post-distillation by-products (e.g., spent material, residual distillation water) in comparison to the essential oil and total extract obtained from unprocessed hemp flowers.

A terpene analysis of the essential oil revealed 14 monoterpenes and 35 sesquiterpenes. The cannabinoid profiling of extracts showed seven acidic precursors and 14 neutral derivatives, with cannabidiol (CBD) reaching the highest concentration (up to 16 wt.%) in the spent material extract. The antimicrobial assessment of hemp EO, cannabinoid-containing extracts, and single compounds (i.e., CBD, cannabigerol, cannabinol, and cannabichromene) against a panel of 20 microbial strains demonstrated significant inhibitory activities against Gram-positive bacteria, Helicobacter pylori, and Trichophyton species.

In conclusion, this work suggests promising opportunities to use cannabinoid-rich materials from hemp flower processing in functional foods, cosmetics, and pharmaceuticals with antimicrobial properties.”

https://pubmed.ncbi.nlm.nih.gov/38927152/

“Considering that the hemp flower essential oil industry generates significant amounts of unused biomass rich in cannabinoids, the strategy implemented in the current work could afford high-added-value by-products within the hemp production chain, contributing to the principles of the circular economy and sustainability. Altogether, this work can open promising avenues for utilizing cannabinoid-rich materials obtained during hemp flower processing in functional foods or cosmeceutical and pharmaceutical products with antimicrobial properties.”

https://www.mdpi.com/2079-6382/13/6/485

Cannabis sativa (Hemp) seed-derived peptides WVYY and PSLPA modulate the Nrf2 signaling pathway in human keratinocytes

pubmed logo

“Cannabis sativa (Hemp) seeds are used widely for cosmetic and therapeutic applications, and contain peptides with substantial therapeutic potential.

Two key peptides, WVYY and PSLPA, extracted from hemp seed proteins were the focal points of this study. These peptides have emerged as pivotal contributors to the various biological effects of hemp seed extracts. Consistently, in the present study, the biological effects of WVYY and PSLPA were explored.

We confirmed that both WVYY and PSLPA exert antioxidant and antibacterial effects and promote wound healing.

We hypothesized the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in these observed effects, given that Nrf2 is reported to be a central player in the regulation of these observed effects. Molecular-level investigations unequivocally confirmed the role of the Nrf2 signaling pathway in the observed effects of WVYY and PSLPA, specifically their antioxidant effects.

Our study highlights the therapeutic potential of hemp seed-derived peptides WVYY and PSLPA, particularly with respect to their antioxidant effects, and provides a nuanced understanding of their effects. Further, our findings can facilitate the investigation of targeted therapeutic applications and also underscore the broader significance of hemp extracts in biological contexts.”

https://pubmed.ncbi.nlm.nih.gov/38781174/

“Although a more in-depth investigation into the precise roles of each peptide is necessary, we believe that a thorough examination of the highly specific roles of various peptides could lead to a broad range of medical and biological applications. In conclusion, we confirmed that the peptides WVYY and PSLPA derived from hemp seed extracts exhibit multiple effects, including antioxidant mechanisms. We propose that the overall “effect” of hemp extract originates from these contributions.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298487

Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections

pubmed logo

“The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS’s crucial involvement in regulating immune responses.

While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions.

While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes.

The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis.

This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host’s response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.”

https://pubmed.ncbi.nlm.nih.gov/38775488/

https://journals.asm.org/doi/10.1128/iai.00020-24

In vitro Antibacterial Activity of Ethanolic Tanao Si Kan Dang RD1 (Cannabis sativa L.) Extracts Against Human Antibiotic-Resistant Bacteria

pubmed logo

“Background and Objective: A new strain of cannabis, Cannabis sativa L. Tanao Si Kan Dang RD1, has been approved and registered by the Rajamangala University of Technology Isan, Thailand. The C. sativa is acknowledged for its medicinal properties which demonstrated various therapeutic properties, such as anti-cancer and antibacterial activities. This study aimed to investigate the antibacterial activity of ethanolic extracts from the stems and leaves of the Tanao Si Kan Dang RD1 strain against seven antibiotic-resistant bacteria. 

Materials and Methods: The primary antibacterial activity of ethanolic Tanao Si Kan Dang RD1 extracts were determined using the disc diffusion method, while the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using the broth microdilution method. 

Results: The largest inhibition zone, measuring 12 mm, was observed in leaf extracts against Pseudomonas aeruginosa 101. The lowest MIC, at 0.78 mg/mL, was obtained from stem extracts against Stenotrophomonas maltophilia. The lowest MBCs, at 12.5 mg/mL, were observed in leaf extracts against Enterococcus faecalisAcinetobacter baumannii, multidrug-resistant KlebsiellapneumoniaeStenotrophomonas maltophilia and Pseudomonas aeruginosa 101 and stem extracts against Acinetobacter baumannii, multidrug-resistant Klebsiella pneumoniaeStenotrophomonas maltophilia and Pseudomonas aeruginosa 101. 

Conclusion: This study presents a novel finding regarding the antibacterial activity of ethanolic extracts from the leaves and stems of Tanao Si Kan Dang RD1 against antibiotic-resistant bacteria. The potential application of these cannabis plant extracts in the development of antibiotics capable of combating antibiotic-resistant pathogenic bacteria represents a promising strategy to address a significant global health concern.”

https://pubmed.ncbi.nlm.nih.gov/38686733/

https://scialert.net/abstract/?doi=pjbs.2024.119.124

Immunostimulatory and Antibacterial Effects of Cannabis sativa L. Leaves on Broilers

pubmed logo

“The aim of this study was to evaluate the effect of dried Cannabis sativa L. leaves as a phytogenic mixture added to broiler feed on CD4+ and CD8+ T lymphocyte subpopulations,

Newcastle disease virus (NDV) antibody titres, and the presence of E. coli in faecal samples. The study was conducted on 100 male Ross 308 broilers, divided into four groups of 25 broilers, for a 42-day research period. The groups were housed separately in boxes on a litter of softwood shavings and were fed starter mixture from day 1 to day 21 and finisher mixture from day 22 to day 42. Industrial hemp (C. sativa) was grown in the Crkvina area, Croatia (latitude: 45°18’46.8″ N; longitude: 15°31’30″ E). The hemp leaves were manually separated, sun-dried, and ground to a powder. The mixture offered to the control group did not contain cannabis leaves, whereas the three experimental groups received mixtures containing mixed cannabis leaves in a quantity of 10 g/kg, 20 g/kg, or 30 g/kg (E_10, E_20, and E_30, respectively). The mean NDV antibody level was uniform in all study groups until post-vaccination day 14 and increased comparably with time. The percentage of CD4+ and CD8+ lymphocytes in the peripheral blood subpopulation showed statistically significant differences (p < 0.001) in the E_20 group as compared with the control group and both the E_10 and E_30 groups throughout the study period. As the broiler age increased, the CD4+-to-CD8+ ratios also increased and were statistically significant (p < 0.0001) on day 42 in all experimental groups as compared to the control group. Comparing the control group with the experimental groups indicated that the bacterial count was lower in broiler groups having received feed with the addition of 20 g/kg and 30 g/kg C. sativa leaves.

In conclusion, the C. sativa leaves were found to elicit a favourable immunomodulatory effect on cell-mediated and humoral immune responses in broilers via increased CD4+ and CD8+ lymphocyte subpopulations and higher CD4+:CD8+ cell ratios, thus indicating enhanced immune function capacity. In addition, C. sativa leaves may have complementary effects on the broiler post-vaccination immune response, increase broilers’ resistance to infectious diseases, reduce the effect of stress associated with vaccination, and improve broiler health and welfare.”

https://pubmed.ncbi.nlm.nih.gov/38672306/

“Food safety, climate change, the emergence of infectious diseases, the ban on the use of antibiotics as growth promoters, and increasingly demanding intensive production are daily challenges for poultry production. A functional immune system is a prerequisite for animal health, and nutrition is one of the modulators of the immune system; therefore, the appropriate balance of nutrients is extremely important for the proper development and maintenance of the immune system of animals. The antimicrobial and immunomodulatory effects of phytobiotics are properties that make their use important as feed additives for poultry.

Cannabis sativa L. contains many different compounds such as flavonoids, terpenes, and cannabinoids, each with different properties and effects. The effects of C. sativa seeds, essential oils, and cakes as feed additives for poultry have already been investigated, but the effect of C. sativa L. leaves as a feed additive on immunostimulatory and antibacterial activity has not. The results of this study show that C. sativa as a phytogenic additive to animal feed has a favourable antimicrobial and immunomodulatory effect in the production of broiler chickens.”

https://www.mdpi.com/2076-2615/14/8/1159

Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems

pubmed logo

“The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-β-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects.

As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficileListeria monocytogenesEnterococcus faecalisStaphylococcus aureusStaphylococcus pyrogenesEscherichia coliKlebsiella pneumoniaeSalmonella typhimuriumPseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL-1 to <10 CFU mL-1 in most cases). Additionally, for the system with hydroxypropyl-β-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilusLactobacillus caseiLactobacillus plantarumLactobacillus brevisLactobacillus rhamnosusLactobacillus reuteriPediococcus pentosaceusLactococcus lactisLactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104-107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.”

https://pubmed.ncbi.nlm.nih.gov/38667045/

“This study investigated the antimicrobial potential of Cannabis sativa extract, Henola variety, and systems with carriers. The extract showed antimicrobial activity against pathogenic microorganisms, suggesting its possible application as support in combating infections. Additionally, the system with hydroxypropyl-β-cyclodextrin may possess prebiotic properties, stimulating the growth of probiotic microorganisms. Furthermore, the investigated systems exhibit immunomodulatory and immunostimulatory effects, with potential therapeutic implications for modulating inflammatory responses. Overall, these findings underscore the multifaceted therapeutic potential of Cannabis sativa extracts. The delivery systems might be used as powder-based food additives, but they might also be subjected to formulation studies for the development of an oral dietary supplement.”

https://www.mdpi.com/2079-6382/13/4/369

Antimicrobial and antibiofilm effect of cannabinoids from Cannabis sativa against methicillin-resistant Staphylococcus aureus (MRSA) causing bovine mastitis

pubmed logo

“Antimicrobial resistance (AMR) poses a serious threat to human, animal, and plant health on a global scale. Search and elimination techniques should be used to effectively counter the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. With only a few novel drugs in clinical development, the quest for plant-based alternatives to prevent the spread of antibiotic resistance among bacteria has accelerated. Treatment of MRSA infections is challenging owing to rapidly emerging resistance mechanisms coupled with their protective biofilms. In the present research, we examined the antibacterial properties of ten plant-derived ethanolic leaf extracts.

The most effective ethanolic leaf extract against MRSA in decreasing order of zone of inhibition, Cannabis sativa L. > Syzygium cumini > Murraya koenigii > Eucalyptus sp. > while Aloe barbadensis, Azadirachta indica, had very little impact. Mangifera indica, Curcuma longa, Tinospora cordifolia, and Carica papaya did not exhibit inhibitory effects against MRSA; hence, Cannabis was selected for further experimental study. The minimal inhibitory concentration (MIC) of Cannabis sativa L. extract was 0.25 mg ml-1 with 86% mortality. At a sub-MIC dosage of 0.125 mg ml-1, the biofilm formation was reduced by 71%.

The two major cannabinoids detected were cannabidiol and delta-9-tetrahydrocannabinol (Δ9-THC), which were majorly attributed to substantial inhibitory action against MRSA. The time-kill kinetics demonstrated a bactericidal action at 4 MIC over an 8-20-h time window with a 90% reduction in growth rate. The results from SEM, and light microscopy Giemsa staining revealed a reduction in cells in the treated group with increased AKP activity, indicating bacterial cell membrane breakdown.

These findings suggested cannabinoids may be a promising alternative to antibiotic therapy for bovine biofilm-associated MRSA.”

https://pubmed.ncbi.nlm.nih.gov/38568425/

https://link.springer.com/article/10.1007/s10123-024-00505-x