The Antimicrobial Activity of Cannabinoids

antibiotics-logo“A post-antibiotic world is fast becoming a reality, given the rapid emergence of pathogens that are resistant to current drugs. Therefore, there is an urgent need to discover new classes of potent antimicrobial agents with novel modes of action.

Cannabis sativa is an herbaceous plant that has been used for millennia for medicinal and recreational purposes. Its bioactivity is largely due to a class of compounds known as cannabinoids.

Recently, these natural products and their analogs have been screened for their antimicrobial properties, in the quest to discover new anti-infective agents. This paper seeks to review the research to date on cannabinoids in this context, including an analysis of structure-activity relationships. It is hoped that it will stimulate further interest in this important issue.”

https://pubmed.ncbi.nlm.nih.gov/32668669/

https://www.mdpi.com/2079-6382/9/7/406

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids-Promising Antimicrobial Drugs or Intoxicants with Benefits?

antibiotics-logo“Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance.

Extracts of Cannabis sativa have been used for the treatment of several diseases since ancient times. However, its phytocannabinoid constituents are predominantly associated with psychotropic effects and medical applications far beyond the treatment of infections.

It has been demonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositive bacteria including methicillin-resistant Staphylococcus aureus (MRSA).

As first in vivo efficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promising antimicrobial drug candidates or overhyped intoxicants with benefits.”

https://pubmed.ncbi.nlm.nih.gov/32498408/

https://www.mdpi.com/2079-6382/9/6/297

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity

Frontiers in Pharmacology welcomes new Field Chief Editor ...“Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury.

Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice.

While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs).

THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R.

Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.”

https://pubmed.ncbi.nlm.nih.gov/32612530/

“In summary, the current study suggests that treatment of mice with THC post-SEB challenge protects mice from SEB-mediated toxicity by inhibiting inflammation and ARDS through the modulation of miRs. Because SEB is a super antigen that drives cytokine storm, our studies suggest that THC is a potent anti-inflammatory agent that has the potential to be used as a therapeutic modality to treat SEB-induced ARDS.

It is of interest to note that a significant proportion of Coronavirus disease 2019 (COVID-19) patients come down with sepsis and ARDS accompanied by cytokine storm. ”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00893/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Isolation, Purification, and Antimicrobial Characterization of Cannabidiolic Acid and Cannabidiol From Cannabis sativa L

biomolecules-logo“The emergence of multi-drug resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) causes a major threat to public health due to its limited therapeutic options.

There is an urgent need for the development of new effective antimicrobial agents and alternative strategies that are effective against resistant bacteria.

The parallel legalization of cannabis and its products has fueled research into its many therapeutic avenues in many countries around the world.

This study aimed at the development of a reliable method for the extraction, purification, characterization, and quantification of cannabidiolic acid (CBDA) and its decarboxylated form cannabidiol (CBD) present in the fiber type Cannabis sativa L.

Overall, CBD exhibited a strong antimicrobial effect against Gram-positive strains and could serve as an alternative drug for tackling MRSA.”

https://pubmed.ncbi.nlm.nih.gov/32545687/

https://www.mdpi.com/2218-273X/10/6/900

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp.

LWT“The growing concern on the antibiotic resistance spreading among bacteria has stimulated the search for valuable alternatives from plant sources.

This study dealt with the potential use of hemp (Cannabis sativa L.) seeds extract to inhibit the growth of selected pathogenic enterobacteria and the biofilm formation by Staphylococcus aureus, representing severe risks of food-borne illnesses. Effects on probiotic bacteria were also examined. A double-staining viability/mortality assay was used to examine potential S. aureus membrane damage.

Our results highlighted a selective antimicrobial activity of C. sativa extract against pathogenic strains and no inhibitory effects on the growth of probiotic strains belonging to the Bifidobacterium and Lactobacillus genera. This selective inhibition is of outmost importance for the maintenance of healthy gut microbiota.

The double-staining assay showed that the C. sativa extract was capable of inhibiting the biofilm producer S. aureus ATCC 35556 strain; this antibacterial action was only partially linked to membrane damage. Biofilm formation was inhibited as well; inhibition occurs at lower concentration with respect to planktonic cells (0.5 mg/ml vs 1 mg/ml, respectively).

Therefore, hemp seeds extracts represent a new exploitable and valuable antimicrobial and antibiofilm agent for the food and nutraceutical industry as a possible alternative to antibiotics/antibacterial compounds.

Cannabis sativa L. seeds showed antimicrobial and antibiofilm activity.

C. sativa L. seeds selectively inhibit the growth of potentially pathogenic strains.

C. sativa L. seeds did not exert antimicrobial activity against probiotic bacteria.

C. sativa L. seeds inhibit the biofilm formation by Staphylococcus aureus.”

https://www.sciencedirect.com/science/article/pii/S0023643820301377

Image 1

“Antimicrobial Activity of Cannabis sativa L.”  https://www.scirp.org/journal/PaperInformation.aspx?PaperID=18123

“Antimicrobial studies of the leaf of cannabis sativa L.”  https://www.ncbi.nlm.nih.gov/pubmed/16414764

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria.

Scientific Reports “The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.”

https://www.ncbi.nlm.nih.gov/pubmed/32139776

https://www.nature.com/articles/s41598-020-60952-0

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Uncovering the hidden antibiotic potential of Cannabis.

 Go to Volume 0, Issue ja“The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating exploration of alternative therapies.

Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated.

Here, we show that cannabinoids exhibit antibacterial activity against MRSA, inhibit its ability to form biofilms and eradicate pre-formed biofilms and stationary phase cells persistent to antibiotics.

We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA.

We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane.

Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multi-drug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32017534

https://pubs.acs.org/doi/10.1021/acsinfecdis.9b00419

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antimicrobial potential of endocannabinoid and endocannabinoid-like compounds against methicillin-resistant Staphylococcus aureus.

 Scientific Reports

“Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Staphylococcal biofilms are associated with increased antimicrobial resistance and are generally less affected by host immune factors. Therefore, there is an urgent need for novel agents that not only aim at multidrug-resistant pathogens, but also ones that will act as anti biofilms. In the present study, we investigated the antimicrobial activity of the endocannabinoid (EC) anandamide (AEA) and the endocannabinoid-like (EC-like), arachidonoyl serine (AraS) against methicillin resistant S. aureus strains (MRSA). We observed a strong inhibition of biofilm formation of all tested MRSA strains as well as a notable reduction of metabolic activity of pre-formed MRSA biofilms by both agents. Moreover, staphylococcal biofilm-associated virulence determinants such as hydrophobicity, cell aggregation and spreading ability were altered by AEA and AraS. In addition, the agents were able to modify bacterial membrane potential. Importantly, both compounds prevent biofilm formation by altering the surface of the cell without killing the bacteria. Therefore, we propose that EC and EC-like compounds may act as a natural line of defence against MRSA or other antibiotic resistant bacteria. Due to their anti biofilm action these agents could also be a promising alternative to antibiotic therapeutics against biofilm-associated MRSA infections.”

https://www.ncbi.nlm.nih.gov/pubmed/30523307

https://www.nature.com/articles/s41598-018-35793-7

“Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.”  https://www.ncbi.nlm.nih.gov/pubmed/30120078

“Antimicrobial Activity of Cannabis sativa L.”  https://www.scirp.org/journal/PaperInformation.aspx?PaperID=18123

“Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.).” https://www.ncbi.nlm.nih.gov/pubmed/19969046

“Antimicrobial studies of the leaf of cannabis sativa L.”   https://www.ncbi.nlm.nih.gov/pubmed/16414764

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.

Journal of Integrative Medicine

“This study examined the antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava against methicillin-resistant Staphylococcus aureus (MRSA) and used a standardized purification protocol to determine the presence and abundance of bioactive compounds in the leaf extracts.

RESULTS:

Resistance to methicillin, penicillin, oxacillin and cefoxitin was observed in each of the clinical and nonclinical MRSA isolates. However, they were still vulnerable to vancomycin. Used individually, the 50% extract of each plant leaf inhibited MRSA growth. A profound synergism was observed when C. sativa was used in combination with T. orientalis (1:1) and when P. guajava was used in combination with T. orientalis (1:1). This was shown by larger zones of inhibition. This synergism was probably due to the combined inhibitory effect of phenolics present in the leaf extracts (i.e., quercetin and gallic acid) and catechin, as detected by HPTLC.

CONCLUSION:

The leaf extracts of C. sativa, T. orientalis and P. guajava had potential for the control of both hospital- and community-acquired MRSA. Moreover, the inhibitory effect was enhanced when extracts were used in combination.”

https://www.ncbi.nlm.nih.gov/pubmed/30120078

https://www.sciencedirect.com/science/article/pii/S2095496418300815?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antimicrobial Activity of Cannabis sativa L.

Image result for scientific research an academic publisher

“The oil of the seeds, petroleum ether and methanol extracts of the whole plant of Cannabis sativa belonging to the family Cannabinaceae were screened for their antimicrobial activity against two Gram positive organisms (Bacillus subtilis, Staphylococcus aureus), two Gram negative organisms (Escherichia coli, Pseudomonas aeruginosa) and two fungi namely Aspergillus niger and Candida albicans using the cup plate agar diffusion method.

The oil of the seeds of Cannabis sativa exerted pronounced antibacterial activity (21 – 28 mm) against Bacillus subtilis and Staphylococcus aureus, moderate activity (15 mm) against Escherichia coli and high activity (16 mm) against Pseudomonas aeruginosa and inactive against the two fungi tested. The petroleum ether extract of the whole plant exhibited pronounced antibacterial activity (23 – 28 mm) against both Bacillus subtilis and Staphylococcus aureus organisms, high activity (16 mm) against Escherichia coli and inactive against Pseudomonas aeruginosa and both fungi. The methanol extract of the whole plant showed also pronounced antibacterial activity (29 mm) against Bacillus subtilis, low activity (12 mm) against Staphylococcus aureus and high activity (16 – 18 mm) against both Gram negative organisms, inactive against Aspergillus niger and low activity (13 mm) against Candida albicans.

The minimum inhibitory concentrations of Cannabis sativa methanol extracts of the seeds and the whole plant against the standard organisms were determined using the agar plate dilution method. The standard organisms were tested against reference antibacterial and antifungal drugs and the results were compared with the activity of the extracts.”

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=18123

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous