Characterizing Cannabis Use and Perceived Benefit in a Tertiary Headache Center Patient Sample

pubmed logo

“Background and objectives: Research suggests a potential role for cannabinoids in the etiology and treatment of migraine. However, there is a paucity of research on usage patterns and perceived benefits of cannabis use in clinical headache patient populations.

Methods: Patients from a tertiary headache center completed a 1-time online survey regarding cannabis use patterns and perceived benefits of cannabis-based products in treating migraine symptoms, clinical features, and risk factors (e.g., depression, sleep disturbance). Descriptive analyses were performed.

Results: Data were collected from 1373 patients (response rate 25.4% [1,373/5,400]), with 55.7% reporting cannabis-based product use in the past 3 years and 32.5% indicating current use. The most frequently cited reasons for cannabis-based product use were treating headache (65.8%) and sleep concerns (50.8%). Inhaled products (i.e., smoked/vaped) and edibles were the most commonly reported delivery methods, with THC/CBD (∆9 tetrahydrocannabinol/cannabidiol) blends as the most-cited product composition. A majority of participants reported cannabis-related improvements in migraine headache characteristics (i.e., intensity: 78.1%; duration: 73.4%; frequency: 62.4%), nausea (56.3%), and risk factors (sleep disturbance: 81.2%; anxiety: 71.4%; depression: 57.0%). Over half (58.0%) of the respondents reported only using cannabis products when experiencing a headache, while 42.0% used cannabis most days/daily for prevention. Nearly half (48.9%) of the respondents reported that cannabis use contributed to a reduction in medication amount for headache treatment, and 14.5% reported an elimination of other medications. A minority (20.9%) of participants reported experiencing side effects when using cannabis products for headache, most commonly fatigue/lethargy. For those participants who reported no use of cannabis-based products in the previous 3 years, approximately half indicated not knowing what cannabis product to take or the appropriate dosage.

Discussion: This is the largest study to date to document cannabis product usage patterns and perceived benefits for migraine management in a clinical headache patient sample. A majority of patients surveyed reported using cannabis products for migraine management and cited perceived improvements in migraine characteristics, clinical features, and associated risk factors. The findings warrant experimental trials to confirm the perceived benefits of cannabis products for migraine prevention and treatment.”

https://pubmed.ncbi.nlm.nih.gov/38455123/

https://www.neurology.org/doi/10.1212/CPJ.0000000000200285

Vaporized Cannabis versus Placebo for Acute Migraine: A Randomized Controlled Trial

pubmed logo

“Preclinical and retrospective studies suggest cannabinoids may be effective in migraine treatment. However, there have been no randomized clinical trials examining the efficacy of cannabinoids for acute migraine.

In this randomized, double-blind, placebo-controlled, crossover trial, adults with migraine treated up to 4 separate migraine attacks, 1 each with vaporized 1) 6% tetrahydrocannabinol (THC-dominant); 2) 11% cannabidiol (CBD-dominant); 3) 6% THC+11% CBD; and 4) placebo cannabis flower in a randomized order. Washout period between treated attack was 1 week. The primary endpoint was pain relief and secondary endpoints were pain freedom and most bothersome symptom (MBS) freedom, all assessed at 2 hours post-vaporization.

Results Ninety-two participants were enrolled and randomized, and 247 migraine attacks were treated. THC+CBD was superior to placebo at achieving pain relief (67.2% vs 46.6%, Odds Ratio [95% Confidence Interval] 2.85 [1.22, 6.65], p=0.016), pain freedom (34.5% vs. 15.5%, 3.30 [1.24, 8.80], p=0.017) and MBS freedom (60.3% vs. 34.5%, 3.32 [1.45, 7.64], p=0.005) at 2 hours, as well as sustained pain freedom at 24 hours and sustained MBS freedom at 24 and 48 hours. THC-dominant was superior to placebo for pain relief (68.9% vs. 46.6%, 3.14 [1.35, 7.30], p=0.008) but not pain freedom or MBS freedom at 2 hours. CBD-dominant was not superior to placebo for pain relief, pain freedom or MBS freedom at 2 hours. There were no serious adverse events.

Conclusions Acute migraine treatment with 6% THC+11% CBD was superior to placebo at 2 hours post-treatment with sustained benefits at 24 and 48 hours.”

https://pubmed.ncbi.nlm.nih.gov/38405890/

https://www.medrxiv.org/content/10.1101/2024.02.16.24302843v1

The Exploration of Cannabis and Cannabinoid Therapies for Migraine

pubmed logo

“Purpose of review: There is increasing interest in the use of cannabis and cannabinoid therapies (CCT) by the general population and among people with headache disorders, which results in a need for healthcare professionals to be well versed with the efficacy and safety data. In this manuscript, we review cannabis and cannabinoid terminology, the endocannabinoid system and its role in the central nervous system (CNS), the data on efficacy, safety, tolerability, and potential pitfalls associated with use in people with migraine and headache disorders. We also propose possible mechanisms of action in headache disorders and debunk commonly held myths about its use.

Recent findings: Preliminary studies show that CCT have evidence for the management of migraine. While this evidence exists, further randomized, controlled studies are needed to better support its clinical use. CCT can be considered an integrative treatment added to mainstream medicine for people with migraine who are refractory to treatment and/or exhibit disability and/or interest in trying these therapies. Further studies are warranted to specify appropriate formulation, dosage, and indication(s). Although not included in guidelines or the AHS 2021 Consensus Statement on migraine therapies, with the legalization of CCT for medical or unrestricted use across the USA, recent systematic reviews highlighting the preliminary evidence for its use in migraine, it is vital for clinicians to be well versed in the efficacy, safety, and clinical considerations for their use. This review provides information which can help people with migraine and clinicians who care for them make mutual, well-informed decisions on the use of cannabis and cannabinoid therapies for migraine based on the existing data.”

https://pubmed.ncbi.nlm.nih.gov/37515745/

https://link.springer.com/article/10.1007/s11916-023-01144-z

Preclinical effects of cannabidiol in an experimental model of migraine

pubmed logo

“Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.”

https://pubmed.ncbi.nlm.nih.gov/37310430/

https://journals.lww.com/pain/Abstract/9900/Preclinical_effects_of_cannabidiol_in_an.316.aspx

SELECTED CANNABIS TERPENES SYNERGIZE WITH THC TO PRODUCE INCREASED CB1 RECEPTOR ACTIVATION

Biochemical Pharmacology

“The cannabis plant exerts its pharmaceutical activity primarily by the binding of cannabinoids to two G protein-coupled cannabinoid receptors, CB1 and CB2. The role that cannabis terpenes play in this activation has been considered and debated repeatedly, based on only limited experimental results. In the current study we used a controlled in-vitro heterologous expression system to quantify the activation of CB1 receptors by sixteen cannabis terpenes individually, by tetrahydrocannabinol (THC) alone and by THC-terpenes mixtures. The results demonstrate that all terpenes, when tested individually, activate CB1 receptors, at about 10-50% of the activation by THC alone. The combination of some of these terpenes with THC significantly increases the activity of the CB1 receptor, compared to THC alone. In some cases, several fold. Importantly, this amplification is evident at terpene to THC ratios similar to those in the cannabis plant, which reflect very low terpene concentrations. For some terpenes, the activation obtained by THC- terpene mixtures is notably greater than the sum of the activations by the individual components, suggesting a synergistic effect. Our results strongly support a modulatory effect of some of the terpenes on the interaction between THC and the CB1 receptor. As the most effective terpenes are not necessarily the most abundant ones in the cannabis plant, reaching “whole plant” or “full spectrum” composition is not necessarily an advantage. For enhanced therapeutic effects, desired compositions are attainable by enriching extracts with selected terpenes. These compositions adjust the treatment for various desired medicinal and personal needs.”

https://pubmed.ncbi.nlm.nih.gov/37084981/

https://www.sciencedirect.com/science/article/pii/S0006295223001399?via%3Dihub

Activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in a chronic migraine rat model

The Journal of Headache and Pain

“Background: Central sensitization has been widely accepted as an underlying pathophysiological mechanism of chronic migraine (CM), activation of cannabinoid type-1 receptor (CB1R) exerts antinociceptive effects by relieving central sensitization in many pain models. However, the role of CB1R in the central sensitization of CM is still unclear.

Methods: A CM model was established by infusing inflammatory soup (IS) into the dura of male Wistar rats for 7 days, and hyperalgesia was assessed by the mechanical and thermal thresholds. In the periaqueductal gray (PAG), the mRNA and protein levels of CB1R and hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) were measured by qRT-PCR and western blotting. After intraventricular injection of Noladin ether (NE) (a CB1R agonist), ZD 7288 (an HCN2 blocker), and AM 251 (a CB1R antagonist), the expression of tyrosine phosphorylation of N-methyl-D-aspartate receptor subtype 2B (pNR2B), calcium-calmodulin-dependent kinase II (CaMKII), and phosphorylated cAMP-responsive element binding protein (pCREB) was detected, and central sensitization was evaluated by the expression of calcitonin gene-related peptide (CGRP), c-Fos, and substance P (SP). Synaptic-associated protein (postsynaptic density protein 95 (PSD95) and synaptophysin (Syp)) and synaptic ultrastructure were detected to explore synaptic plasticity in central sensitization.

Results: We observed that the mRNA and protein levels of CB1R and HCN2 were both significantly increased in the PAG of CM rats. The application of NE or ZD 7288 ameliorated IS-induced hyperalgesia; repressed the pNR2B/CaMKII/pCREB pathway; reduced CGRP, c-Fos, SP, PSD95, and Syp expression; and inhibited synaptic transmission. Strikingly, the application of ZD 7288 relieved AM 251-evoked elevation of pNR2B, CGRP, and c-Fos expression.

Conclusions: These data reveal that activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in CM rats. The activation of CB1R might have a positive influence on the prevention of CM by mitigating central sensitization.”

https://pubmed.ncbi.nlm.nih.gov/37085778/

https://thejournalofheadacheandpain.biomedcentral.com/articles/10.1186/s10194-023-01580-7

A Retrospective Medical Record Review of Adults with Non-Cancer Diagnoses Prescribed Medicinal Cannabis

Logo of jclinmed

“Research describing patients using medicinal cannabis and its effectiveness is lacking. We aimed to describe adults with non-cancer diagnoses who are prescribed medicinal cannabis via a retrospective medical record review and assess its effectiveness and safety. From 157 Australian records, most were female (63.7%; mean age 63.0 years). Most patients had neurological (58.0%) or musculoskeletal (24.8%) conditions. Medicinal cannabis was perceived beneficial by 53.5% of patients.

Mixed-effects modelling and post hoc multiple comparisons analysis showed significant changes overtime for pain, bowel problems, fatigue, difficulty sleeping, mood, quality of life (all p < 0.0001), breathing problems (p = 0.0035), and appetite (p = 0.0465) Symptom Assessment Scale scores. For the conditions, neuropathic pain/peripheral neuropathy had the highest rate of perceived benefit (66.6%), followed by Parkinson’s disease (60.9%), multiple sclerosis (60.0%), migraine (43.8%), chronic pain syndrome (42.1%), and spondylosis (40.0%). For the indications, medicinal cannabis had the greatest perceived effect on sleep (80.0%), followed by pain (51.5%), and muscle spasm (50%). Oral oil preparations of balanced delta-9-tetrahydrocannabinol/cannabidiol (average post-titration dose of 16.9 mg and 34.8 mg per day, respectively) were mainly prescribed. Somnolence was the most frequently reported side effect (21%).

This study supports medicinal cannabis’ potential to safely treat non-cancer chronic conditions and indications.”

“Cannabis (Cannabaceae) has been used medicinally since 400 AD for its analgesic, appetite enhancement, and myorelaxant properties. Emerging evidence suggests that people with chronic conditions may benefit from using medicinal cannabis for treating chronic pain, multiple sclerosis-related spasticity, epilepsy, Parkinson’s disease, insomnia, and anxiety.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965412/

UK medical cannabis registry: assessment of clinical outcomes in patients with headache disorders

Publication Cover

“Objectives: Headache disorders are a common cause of disability and reduced health-related quality of life globally. Growing evidence supports the use of cannabis-based medicinal products (CBMPs) for chronic pain; however, a paucity of research specifically focuses on CBMPs’ efficacy and safety in headache disorders. This study aims to assess changes in validated patient-reported outcome measures (PROMs) in patients with headaches prescribed CBMPs and investigate the clinical safety in this population.

Methods: A case series of the UK Medical Cannabis Registry was conducted. Primary outcomes were changes from baseline in PROMs (Headache Impact Test-6 (HIT-6), Migraine Disability Assessment (MIDAS), EQ-5D-5L, Generalized Anxiety Disorder-7 (GAD-7) questionnaire and Single-Item Sleep Quality Scale (SQS)) at 1-, 3-, and 6-months follow-up. P-values <0.050 were deemed statistically significant.

Results: Ninety-seven patients were identified for inclusion. Improvements in HIT-6, MIDAS, EQ-5D-5L and SQS were observed at 1-, 3-, and 6-months (p < 0.005) follow-up. GAD-7 improved at 1- and 3-months (p < 0.050). Seventeen (17.5%) patients experienced a total of 113 (116.5%) adverse events.

Conclusion: Improvements in headache/migraine-specific PROMs and general health-related quality of life were associated with the initiation of CBMPs in patients with headache disorders. Cautious interpretation of results is necessary, and randomized control trials are required to ascertain causality.”

https://pubmed.ncbi.nlm.nih.gov/36722292/

https://www.tandfonline.com/doi/full/10.1080/14737175.2023.2174017

Efficacy and Safety of Medical Marijuana in Migraine Headache: A Systematic Review

“Medical marijuana treatment for migraine is becoming more common, although the legality and societal acceptance of marijuana for medical purposes in the United States have been challenged by the stigma attached to it as a recreational drug.

These substances function to reduce nociception and decrease the frequency of migraine by having an impact on the endocannabinoid system.

Our study reviewed the clinical response, dosing, and side effects of marijuana in migraine management. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a literature search in PubMed, Google Scholar, and Science Direct, and nine studies were included in the systematic review.

The studies demonstrated that medical marijuana has a significant clinical response by reducing the length and frequency of migraines. No severe adverse effects were noted. Due to its effectiveness and convenience, medical marijuana therapy may be helpful for patients suffering from migraines. However, additional clinical trials and observational studies with longer follow-ups are required to study the efficacy and safety of the drug.”

https://pubmed.ncbi.nlm.nih.gov/36660507/

“The main objective of this article is to assess the efficacy and safety of medical marijuana for the treatment of migraine headaches. All the studies showed encouraging findings on the therapeutic effects of medicinal marijuana in migraine treatment. Additionally, medical marijuana is well-tolerated with fewer side effects and is safe to use in migraine patients.”

https://www.cureus.com/articles/118190-efficacy-and-safety-of-medical-marijuana-in-migraine-headache-a-systematic-review

The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/