Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery.

Pharmacological Research“Depression is a widespread psychological disorder that affects up to 20% of the world’s population. Traditional Chinese medicine (TCM), with its unique curative effect in depression treatment, is gaining increasing attention as the discovery of novel antidepressant drug has become the pursuit of pharmaceutical. This article summarizes the work done on the natural products from TCM that have been reported to conceive antidepressant effects in the past two decades, which can be classified according to various mechanisms including increasing synaptic concentrations of monoamines, alleviating the hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, lightening the impairment of neuroplasticity, fighting towards immune and inflammatory dysregulation. The antidepressant active ingredients identified can be generally divided into saponins, flavonoids, alkaloids, polysaccharides and others. Albiflorin, Baicalein, Berberine chloride, beta-Asarone, cannabidiol, Curcumin, Daidzein, Echinocystic acid (EA), Emodin, Ferulic acid, Gastrodin, Genistein, Ginsenoside Rb1, Ginsenoside Rg1, Ginsenoside Rg3, Hederagenin, Hesperidin, Honokiol, Hyperoside, Icariin, Isoliquiritin, Kaempferol, Liquiritin, L-theanine, Magnolol, Paeoniflorin, Piperine, Proanthocyanidin, Puerarin, Quercetin, Resveratrol (trans), Rosmarinic acid, Saikosaponin A, Senegenin, Tetrahydroxystilbene glucoside and Vanillic acid are Specified in this review. Simultaneously, chemical structures of the active ingredients with antidepressant activities are listed and their sources, models, efficacy and mechanisms are described. Chinese compound prescription and extracts that exert antidepressant effects are also introduced, which may serve as a source of inspiration for further development. In the view of present study, the antidepressant effect of certain TCMs are affirmative and encouraging. However, there are a lot of work needs to be done to evaluate the exact therapeutic effects and mechanisms of those active ingredients, specifically, to establish a unified standard for diagnosis and evaluation of curative effect.”

https://www.ncbi.nlm.nih.gov/pubmed/31706012

https://www.sciencedirect.com/science/article/abs/pii/S1043661819322601?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Perceived Efficacy of Medical Cannabis in the Treatment of Co-Occurring Health-Related Quality of Life Symptoms.

 Publication Cover“For persons living with chronic conditions, health-related quality of life (HRQoL) symptoms, such as pain, anxiety, depression, and insomnia, often interact and mutually reinforce one another.

There is evidence that medical cannabis (MC) may be efficacious in ameliorating such symptoms and improving HRQoL.

As many of these HRQoL symptoms may mutually reinforce one another, we conducted an exploratory study to investigate how MC users perceive the efficacy of MC in addressing co-occurring HRQoL symptoms. We conducted a cross-sectional online survey of persons with a state medical marijuana card in Illinois (N = 367) recruited from licensed MC dispensaries across the state. We conducted tests of ANOVA to measure how perceived MC efficacy for each HRQoL symptom varied by total number of treated symptoms reported by participants.

Pain was the most frequently reported HRQoL treated by MC, followed by anxiety, insomnia, and depression. A large majority of our sample (75%) reported treating two or more HRQoL symptoms. In general, perceived efficacy of MC in relieving each HRQoL symptom category increased with the number of co-occurring symptoms also treated with MC. Perceived efficacy of MC in relieving pain, anxiety, and depression varied significantly by number of total symptoms experienced.

This exploratory study contributes to our understanding of how persons living with chronic conditions perceive the efficacy of MC in treating co-occurring HRQoL symptoms. Our results suggest that co-occurring pain, anxiety, and depression may be particularly amenable to treatment with MC.”

https://www.ncbi.nlm.nih.gov/pubmed/31693457

https://www.tandfonline.com/doi/abs/10.1080/08964289.2019.1683712?journalCode=vbmd20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Does cannabis use modify the effect of post-traumatic stress disorder on severe depression and suicidal ideation? Evidence from a population-based cross-sectional study of Canadians

Image result for journal of psychopharmacology“Post-traumatic stress disorder sharply increases the risk of depression and suicide. Individuals living with post-traumatic stress disorder frequently use cannabis to treat associated symptoms.

We sought to investigate whether cannabis use modifies the association between post-traumatic stress disorder and experiencing a major depressive episode or suicidal ideation.

This study provides preliminary epidemiological evidence that cannabis use may contribute to reducing the association between post-traumatic stress disorder and severe depressive and suicidal states. There is an emerging need for high-quality experimental investigation of the efficacy of cannabis/cannabinoids for the treatment of post-traumatic stress disorder.”

https://www.ncbi.nlm.nih.gov/pubmed/31684805

https://journals.sagepub.com/doi/10.1177/0269881119882806

“Cannabis could help alleviate depression and suicidality among people with PTSD” https://medicalxpress.com/news/2019-11-cannabis-alleviate-depression-suicidality-people.html

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Ligands of the CB2 cannabinoid receptors augment activity of the conventional antidepressant drugs in the behavioural tests in mice.

Behavioural Brain Research“Although a lot of information can be found on the specific dual role of the endocannabinoid system in the emotional-related responses, little is known whether stimulation or inhibition of the CB receptors may affect the activity of the frequently prescribed antidepressant drugs.

Our interests have been particularly focused on the potential influence of the CB2 receptors, as the ones whose central effects are relatively poorly documented when compared to the central effects of the CB1 receptors. Therefore, we evaluated the potential interaction between the CB2 receptor ligands (i.e., JWH133 – CB2 receptor agonist and AM630 – CB2 receptor inverse agonist) and several common antidepressant drugs that influence the monoaminergic system (i.e., imipramine, escitalopram, reboxetine).

Summarizing, the results of the present study revealed that both activation and inhibition of the CB2 receptor function have a potential to strengthen the antidepressant activity of drugs targeting the monoaminergic system. Most probably, the described interaction has a pharmacodynamic background.”

https://www.ncbi.nlm.nih.gov/pubmed/31626848

“Interplay between CB2 receptor ligands and antidepressants is pharmacodynamic in nature.”

https://www.sciencedirect.com/science/article/pii/S0166432819311891?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings.

Progress in Molecular Biology and Translational Science“Cannabis sativa (cannabis) is one of the oldest plants cultivated by men. Cannabidiol (CBD) is the major non-psychomimetic compound derived from cannabis. It has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders.

In this narrative review, we have summarized a selected number of pre-clinical and clinical studies, examining the effects of CBD in neuropsychiatric disorders. In some pre-clinical studies, CBD was demonstrated to potentially exhibit anti-epileptic, anti-oxidant, anti-inflammatory anti-psychotic, anxiolytic and anti-depressant properties. Moreover, CBD was shown to reduce addictive effects of some drugs of abuse.

In clinical studies, CBD was shown to be safe, well-tolerated and efficacious in mitigating the symptoms associated with several types of seizure disorders and childhood epilepsies.

Given that treatment with CBD alone was insufficient at managing choreic movements in patients with Huntington’s disease, other cannabis-derived treatments are currently being investigated. Patients with Parkinson’s disease (PD) have reported improvements in sleep and better quality of life with CBD; however, to fully elucidate the therapeutic potential of CBD on the symptoms of PD-associated movement disorders, larger scale, randomized, placebo-controlled studies still need to be conducted in the future.

Currently, there are no human studies that investigated the effects of CBD in either Alzheimer’s disease or unipolar depression, warranting further investigation in this area, considering that CBD was shown to have effects in pre-clinical studies.

Although, anxiolytic properties of CBD were reported in the Social Anxiety Disorder, antipsychotic effects in schizophrenia and anti-addictive qualities in alcohol and drug addictions, here too, larger, randomized, placebo-controlled trials are needed to evaluate the therapeutic potential of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31601406

https://www.sciencedirect.com/science/article/pii/S187711731930095X?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Preclinical and Clinical Evidence Supporting Use of Cannabidiol in Psychiatry.

Image result for hindawi “Cannabidiol (CBD) is a major chemical compound present in Cannabis sativa.

CBD is a nonpsychotomimetic substance, and it is considered one of the most promising candidates for the treatment of psychiatric disorders.

The aim of this review is to illustrate the state of art about scientific research and the evidence of effectiveness of CBD in psychiatric patients.

RESULTS:

Preclinical and clinical studies on potential role of CBD in psychiatry were collected and further discussed. We found four clinical studies describing the effects of CBD in psychiatric patients: two studies about schizophrenic patients and the other two studies carried out on CBD effects in patients affected by generalized social anxiety disorder (SAD).

CONCLUSION:

Results from these studies are promising and suggest that CBD may have a role in the development of new therapeutic strategies in mental diseases, and they justify an in-depth commitment in this field. However, clinical evidence we show for CBD in psychiatric patients is instead still poor and limited to schizophrenia and anxiety, and it needs to be implemented with further studies carried out on psychiatric patients.”

https://www.ncbi.nlm.nih.gov/pubmed/31558911

“Results of our research, enriched in assessment of methodological quality of the studies, confirm the view of this cannabinoid as a promising molecule especially in particular sectors of psychiatry such as schizophrenia, anxiety, depression, and autism. CBD is considered a safe substance and is one of the most promising candidates for the treatment of psychiatric disorders”.

https://www.hindawi.com/journals/ecam/2019/2509129/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid modulation of inflammatory hyperalgesia in the IFN-α mouse model of depression.

Brain, Behavior, and Immunity“Depression is a well-recognised effect of long-term treatment with interferon-alpha (IFN-α), a widely used treatment for chronic viral hepatitis and malignancy. In addition to the emotional disturbances, high incidences of painful symptoms such as headache and joint pain have also been reported following IFN-α treatment.

The endocannabinoid system plays an important role in emotional and nociceptive processing, however it is unknown whether repeated IFN-α administration induces alterations in this system.

The present study investigated nociceptive responding in the IFN-α-induced mouse model of depression and associated changes in the endocannabinoid system. Furthermore, the effects of modulating peripheral endocannabinoid tone on inflammatory pain-related behaviour in the IFN-α model was examined.

In summary, increasing peripheral endocannabinoid tone attenuates inflammatory hyperalgesia induced following repeated IFN-α administration. These data provide support for the endocannabinoid system in mediating and modulating heightened pain responding associated with IFNα-induced depression.”

https://www.ncbi.nlm.nih.gov/pubmed/31505257

“Inflammatory hyperalgesia is associated with altered endocannabinoid levels. Enhancing peripheral endocannabinoid tone attenuates IFN-α related hyperalgesia.”

https://www.sciencedirect.com/science/article/pii/S0889159119306063?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The “entourage effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders.

“Mood disorders are the most prevalent mental conditions encountered in psychiatric practice. Numerous patients suffering from mood disorders present with treatment-resistant forms of depression, co-morbid anxiety, other psychiatric disorders and bipolar disorders.

Standardized essential oils (such as that of Lavender officinalis) have been shown to exert clinical efficacy in treating anxiety disorders. As endocannabinoids are suggested to play an important role in major depression, generalized anxiety and bipolar disorders, Cannabis sativa, was suggested for their treatment.

The endocannabinoid system is widely distributed throughout the body including the brain, modulating many functions. It is involved in mood and related disorders, and its activity may be modified by exogenous cannabinoids.

CB1 and CB2 receptors primarily serve as the binding sites for endocannabinoids as well as for phytocannabinoids, produced by cannabis inflorescences. However, ‘cannabis’ is not a single compound product but is known for its complicated molecular profile, producing a plethora of phytocannabinoids alongside a vast array of terpenes.

Thus, the “entourage effect” is the suggested positive contribution derived from the addition of terpenes to cannabinoids. Here we review the literature on the effects of cannabinoids and discuss the possibility of enhancing cannabinoid activity on psychiatric symptoms by the addition of terpenes and terpenoids.

Possible underlying mechanisms for the anti-depressant and anxiolytic effects are reviewed. These natural products may be an important potential source for new medications for the treatment of mood and anxiety disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31481004

http://www.eurekaselect.com/174648/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

S-Adenosyl-L-Methionine (SAMe), Cannabidiol (CBD), and Kratom in Psychiatric Disorders: Clinical and Mechanistic Considerations.

Brain, Behavior, and Immunity“Given the limitations of prescription antidepressants, many individuals have turned to natural remedies for the management of their mood disorders.

We review three selected natural remedies that may be of potential use as treatments for depressive disorders and other psychiatric or neurological conditions.

The best studied and best supported of these three remedies is S-adenosyl-L-methionine (SAMe), a methyl donor with a wide range of physiological functions in the human organism.

With the increasing legalization of cannabis-related products, cannabidiol (CBD) has gained popularity for various potential indications and has even obtained approval in the United States and Canada for certain neurological conditions.

Kratom, while potentially useful for certain individuals with psychiatric disorders, is perhaps the most controversial of the three remedies, in view of its greater potential for abuse and dependence.

For each remedy, we will review indications, doses and delivery systems, potential anti-inflammatory and immunomodulatory action, adverse effects, and will provide recommendations for clinicians who may be considering prescribing these remedies in their practice.” https://www.ncbi.nlm.nih.gov/pubmed/31301401

https://www.sciencedirect.com/science/article/pii/S0889159119302788?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Repetitive high-frequency transcranial magnetic stimulation reverses depressive-like behaviors and protein expression at hippocampal synapses in chronic unpredictable stress-treated rats by enhancing endocannabinoid signaling.

Pharmacology Biochemistry and Behavior“The anti-depressant effect of repetitive transcranial magnetic stimulation (rTMS), a clinically-useful treatment for depression, is associated with changes to the endocannabinoid system (ECS).

However, it is currently unknown whether different frequencies of rTMS alter the ECS differently. To test this, rats exposed to chronic unpredictable stress (CUS) were treated with rTMS at two different frequencies (5 (high) or 1 Hz (low), 1.26 Tesla) for 7 consecutive days.

Interestingly, we found that only high-frequency rTMS ameliorated depressive-like behaviors and normalized the expression of hippocampal synaptic proteins in CUS-treated rats;

Collectively, our results suggest that high-frequency rTMS exerts its anti-depressant effect by up-regulating diacylglycerol lipase alpha (DAGLα) and cannabinoid type 1 receptor (CB1R).”

https://www.ncbi.nlm.nih.gov/pubmed/31229467

https://www.sciencedirect.com/science/article/pii/S0091305719301376?via%3Dihub

Transcranial magnetic stimulation.jpg

“Transcranial magnetic stimulation (TMS), also known as repetitive transcranial magnetic stimulation (rTMS), is a noninvasive form of brain stimulation in which a changing magnetic field is used to cause electric current at a specific area of the brain through electromagnetic induction. An electric pulse generator, or stimulator, is connected to a magnetic coil, which in turn is connected to the scalp. The stimulator generates a changing electric current within the coil which induces a magnetic field; this field then causes a second inductance of inverted electric charge within the brain itself. Adverse effects of TMS are rare, and include fainting and seizure. Other potential issues include discomfort, pain, hypomania, cognitive change, hearing loss, and inadvertent current induction in implanted devices such as pacemakers or defibrillators”  https://www.sciencedirect.com/science/article/pii/S0091305719301376?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous