Medical marijuana laws and workplace fatalities in the United States

International Journal of Drug Policy

“The aim of this research was to determine the association between legalizing medical marijuana and workplace fatalities.

To date, 29 states and the District of Columbia have legalized the use of marijuana for medicinal purposes. Although there is increasing concern that legalizing medical marijuana will make workplaces more dangerous, little is known about the relationship between medical marijuana laws (MMLs) and workplace fatalities.

 

Findings

Legalizing medical marijuana was associated with a 19.5% reduction in the expected number of workplace fatalities among workers aged 25–44 (incident rate ratio [IRR], 0.805; 95% CI, .662–.979). The association between legalizing medical marijuana and workplace fatalities among workers aged 16–24, although negative, was not statistically significant at conventional levels. The association between legalizing medical marijuana and workplace fatalities among workers aged 25–44 grew stronger over time. Five years after coming into effect, MMLs were associated with a 33.7% reduction in the expected number of workplace fatalities (IRR, 0.663; 95% CI, .482–.912). MMLs that listed pain as a qualifying condition or allowed collective cultivation were associated with larger reductions in fatalities among workers aged 25–44 than those that did not.

Conclusions

The results provide evidence that legalizing medical marijuana improved workplace safety for workers aged 25–44. Further investigation is required to determine whether this result is attributable to reductions in the consumption of alcohol and other substances that impair cognitive function, memory, and motor skills.”

https://www.sciencedirect.com/science/article/pii/S0955395918301968

“Workplace Deaths Drop After States Legalize Medical Marijuana”  https://www.marijuanamoment.net/workplace-deaths-drop-after-states-legalize-medical-marijuana/

“Medical Marijuana States Have Lower Rates Of Workplace Death, According To New Study” https://www.civilized.life/articles/medical-marijuana-states-have-lower-rates-of-workplace-death-according-to-new-study/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neuronal preservation and reactive gliosis attenuation following neonatal sciatic nerve axotomy by a fluorinated cannabidiol derivative.

Neuropharmacology

“Immature peripheral nervous system damage, such as the transection of a peripheral nerve, results in the extensive degeneration of motoneurons and dorsal root ganglia (DRG) sensory neurons, mostly due to apoptotic events.

We have previously shown that cannabidiol (CBD), the most abundant non-psychotropic molecule present in the Cannabis sativa plant, exhibits neuroprotective action when administered daily at a dose of 15 mg/kg.

This study shows that use of the fluorinated synthetic version of CBD (4′-fluoro-cannabidiol, HUF-101) significantly improves neuronal survival by 2-fold compared to that achieved with traditional CBD at one-third the dose. Furthermore, we show that HUF-101 administration significantly upregulates anti-apoptotic genes and blocks the expression of pro-apoptotic nuclear factors.

Two-day-old Wistar rats were subjected to unilateral sectioning of the sciatic nerve and treated daily with HUF-101 (1, 2.5, 5 mg/kg/day, i.p.) or a vehicle solution for five days.

The results were evaluated by Nissl staining, immunohistochemistry, and qRT-PCR. Neuronal counting revealed a 47% rescue of spinal motoneurons and a 79% rescue of DRG neurons (HUF-101, 5 mg/kg). Survival was associated with complete depletion of p53 and a 60-fold elevation in BCL2-like 1 gene expression.

Additionally, peroxisome proliferator-activated receptor gamma (PPAR-gamma) gene expression was downregulated by 80%. Neuronal preservation was coupled with a high preservation of synaptic coverage and a reduction in astroglial and microglial reactions that were evaluated in nearby spinal motoneurons present in the ventral horn of the lumbar intumescence.

Overall, these data strongly indicate that HUF-101 exerts potent neuroprotective effects that are related to anti-apoptotic protection and the reduction of glial reactivity.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus.

European Journal of Medicinal Chemistry

“Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes – both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence.

Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail.

The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes’ medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others.

Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effect of chronic THC administration in the reproductive organs of male mice, spermatozoa and in vitro fertilization.

Biochemical Pharmacology

“The increased use of cannabis as a therapeutic drug in recent years has raised some concerns due to its potential effects on reproductive health. With regards to the male, the endocannabinoid system is involved in the spermatogenesis and in the sperm function.

The chronic use of tetrahidrocannabinol (THC) has been associated with sperm anomalies, decreased sperm motility and structural changes in the testis. However, whether THC affects sperms ability to fertilize and to generate embryos remains unclear.

The aim of this study was to evaluate this effect using a mice model of THC chronic treatment. For this purpose, a chronic treatment with THC was carried out. Mice were randomly allocated into two groups: an experimental group treated with a daily dose of 10 mg/kg-body weight THC for a period of 30 days and a control group treated with a vehicle.

The THC-mice cortex showed a significant decrease of mRNA of Cnr1 compared to control-mice while, in the testis, the expression of Cnr1 was not affected. The weight of testis and epididymis and the histological analysis did not show any change between groups.

On the other hand, no changes were observed in the sperm motility or the sperm concentration. The chronic use of THC did not generate any methylation change in the three CpG regions of Cnn1 analysed, neither in the brain nor in the embryos generated by in vitro fertilization (IVF).

Finally, the embryo production by IVF was no different using spermatozoa from both THC and control mice. This work contradicts the belief that THC consumption has a negative effect on male reproductive processes.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid pharmacology and therapy in gut disorders.

Biochemical Pharmacology

“Cannabis sp and their products (marijuana, hashish…), in addition to their recreational, industrial and other uses, have a long history for their use as a remedy for symptoms related with gastrointestinal diseases.

After many reports suggesting these beneficial effects, it was not surprising to discover that the gastrointestinal tract expresses endogenous cannabinoids, their receptors, and enzymes for their synthesis and degradation, comprising the so-called endocannabinoid system.

This system participates in the control of tissue homeostasis and important intestinal functions like motor and sensory activity, nausea, emesis, the maintenance of the epithelial barrier integrity, and the correct cellular microenvironment. Thus, different cannabinoid-related pharmacological agents may be useful to treat the main digestive pathologies.

To name a few examples, in irritable bowel syndrome they may normalize dysmotility and reduce pain, in inflammatory bowel disease they may decrease inflammation, and in colorectal cancer, apart from alleviating some symptoms, they may play a role in the regulation of the cell niche.

This review summarizes the main recent findings on the role of cannabinoid receptors, their synthetic or natural ligands and their metabolizing enzymes in normal gastrointestinal function and in disorders including irritable bowel syndrome, inflammatory bowel disease, colon cancer and gastrointestinal chemotherapy-induced adverse effects (nausea/vomiting, constipation, diarrhea).”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Falling rates of marijuana dependence among heavy users.

Drug and Alcohol Dependence Home

“Marijuana use has become increasingly popular in the United States since the turn of the century, and typical use patterns among past-month marijuana users have intensified, raising concerns for an increase in cannabis use disorders (CUDs). Yet the population prevalence of CUDs has mostly remained flat. We analyzed trends in DSM-IV marijuana dependence among Daily/Near-Daily (DND) users, both overall and by age and gender, and considered potential explanations.

RESULTS:

Dependence among DND users fell by 39% (26.5%-16.1%; p < .001), with significant trend. No significant change is detected at the population level. Sub-group analysis shows a steep gradient for age but not for gender. Declines are robust to sub-group analysis, except for users over 50 years old. Among dependence symptoms, most showed significant declines: reducing important activities (p < .001); use despite emotional, mental, or physical problems (p < .001); failing attempts to cutback (p < .001); lots of time getting, using, or getting over marijuana (p < .01); and failing to keep limits set on use (p < .05). Reported tolerance showed no significant change.

CONCLUSIONS:

Though it is unclear why, the risk of dependence formation among heavy marijuana users appear to have declined since 2002. Further research is warranted regarding explanations related to state marijuana policies, product forms, or social context.”

https://www.ncbi.nlm.nih.gov/pubmed/30077891

https://www.drugandalcoholdependence.com/article/S0376-8716(18)30389-2/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativa L.

Journal of Biotechnology

“Cannabinoids are secondary natural products from the plant Cannabis sativa L.

Therapeutic indications of cannabinoids currently comprise a significant area of medicinal research.

We have expressed the Δ9-tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) recombinantly in Komagataella phaffii and could detect eight different products with a cannabinoid scaffold after conversion of the precursor cannabigerolic acid (CBGA).

Besides five products remaining to be identified, both enzymes were forming three major cannabinoids of C. sativa – Δ9-tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA).

These studies lay the groundwork for further research as well as biotechnological cannabinoid production.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Brain activity of anandamide: a rewarding bliss?

 

Image result for aps acta pharmacologica

“Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa.

Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse.

Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse.

In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Emerging strategies targeting cb2 cannabinoid receptor: biased agonism and allosterism.

Biochemical Pharmacology

“During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Chronic treatment with the phytocannabinoid Cannabidivarin (CBDV) rescues behavioural alterations and brain atrophy in a mouse model of Rett syndrome.

Neuropharmacology

“Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. RTT is caused by mutations in the MECP2 gene in about 95% of cases and to date no cure is available.

The endocannabinoid system modulates several physiological processes and behavioural responses that are impaired in RTT and its deregulation has been associated with neuropsychiatric disorders which have symptoms in common with RTT.

The present study evaluated the potential therapeutic efficacy for RTT of cannabidivarin (CBDV), a non-psychotropic phytocannabinoid from Cannabis sativa that presents antagonistic properties on the G protein-coupled receptor 55 (GPR55), the most recently identified cannabinoid receptor.

Present results demonstrate that systemic treatment with CBDV (2, 20, 100 mg/Kg ip for 14 days) rescues behavioural and brain alterations in MeCP2-308 male mice, a validated RTT model. The CBDV treatment restored the compromised general health status, the sociability and the brain weight in RTT mice. A partial restoration of motor coordination was also observed. Moreover, increased levels of GPR55 were found in RTT mouse hippocampus, suggesting this G protein-coupled receptor as new potential target for the treatment of this disorder.

Present findings highlight for the first time for RTT the translational relevance of CBDV, an innovative therapeutic agent that is under active investigation in the clinical setting.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous