In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities

pubmed logo

“For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use.

Described as a ‘treasure trove,’ cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer’s, Parkinson’s, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.”

https://pubmed.ncbi.nlm.nih.gov/39056093/

https://www.sciencedirect.com/science/article/pii/S2214750024000684?via%3Dihub

Larvicidal Activity of Hemp Extracts and Cannabidiol against the Yellow Fever Mosquito Aedes aegypti

pubmed logo

“To mitigate pyrethroid resistance in mosquito vectors of emerging and re-emerging human pathogens, there is an urgent need to discover insecticides with novel modes of action. Natural alternatives, such as extracts derived from plants, may serve as substitutes for traditional synthetic insecticides if they prove to be sustainable, cost-effective, and safe for non-target organisms.

Hemp (Cannabis sativa) is a sustainable plant known to produce various secondary metabolites with insecticidal properties, including terpenoids and flavonoids. The goal of this study was to assess the larvicidal activity of hemp leaf extract on mosquito larvae from both pyrethroid-susceptible (PS) and pyrethroid-resistant (PR) strains of Aedes aegypti. Another goal was to identify which components of the extract were responsible for any observed larvicidal activity.

We found that a methanol extract of hemp leaves induced similar concentration-dependent larvicidal activity against PS (LC50: 4.4 ppm) and PR (LC50: 4.3 ppm) strains within 48 h. Partitioning of the leaf extract between methanol and hexane fractions revealed that full larvicidal activity was restricted to the methanol fraction. Analysis of this fraction by gas chromatography-mass spectrometry and nuclear magnetic resonance showed it to be dominated by cannabidiol (CBD). Larvicidal assays using authentic CBD confirmed this compound was primarily responsible for the toxicity of the hemp leaf extract against both strains.

We conclude that hemp leaf extracts and CBD have the potential to serve as viable sources for the development of novel mosquito larvicides.”

https://pubmed.ncbi.nlm.nih.gov/39057250/

“The present study examined whether extracts of hemp leaves were toxic to Aedes aegypti larvae and determined which compound(s) were responsible for the toxicity. We found that larvae, from both insecticide-resistant and -susceptible strains were killed by hemp leaf extract within 48 h of exposure. Furthermore, we found that an abundant cannabinoid (cannabidiol) within the extract was the primary active compound. This study suggests that hemp extracts and cannabidiol are potentially valuable sources for developing biopesticides to control mosquitoes.”

https://www.mdpi.com/2075-4450/15/7/517

Suicidal Ideation in Medicinal Cannabis Patients: A 12-Month Prospective Study

pubmed logo

“Objective: To document the prevalence and correlates of suicidal ideation (SI) among individuals seeking cannabis-based medicinal products (CBMPs); to test whether SI declines or intensifies after three months of CBMP treatment and to document 12-month trajectories of depression in those reporting SI and other patients.

Method: Observational data were available for 3781 patients at entry to treatment, 2112 at three months and 777 for 12 months. Self-reported depressed mood and SI were assessed using items from the PHQ-9. Additional data included sociodemographic characteristics and self-reported well-being.

Results: 25% of the sample reported SI at treatment entry and those with SI had higher levels of depressed mood (mean = 17.4 vs. 11.3; F(1,3533) = 716.5, p < .001) and disturbed sleep (mean = 13.8 vs. 12.2, F(1,3533) = 125.9, p < .001), poorer general health (mean = 43.6 vs. 52.2, F(1,3533) = 118.3, p < .001) and lower quality of life (mean = 0.44 vs. 0.56 (F(1,3533) = 118.3, p < .001). The prevalence of SI reduced from 23.6% to 17.6% (z = 6.5, p < .001) at 3 months. Twelve-month follow-up indicated a substantial reduction in depressed mood with this reduction being more pronounced in those reporting SI (mean (baseline) = 17.7 vs. mean (12 months) = 10.3) than in other patients (mean (baseline) = 11.1 vs. mean (12 months) = 7.0).

Conclusions: SI is common among individuals seeking CBMPs to treat a range of chronic conditions and is associated with higher levels of depressed mood and poorer quality of life. Treatment with CBMPs reduced the prevalence and intensity of suicidal ideation.”

https://pubmed.ncbi.nlm.nih.gov/39045855/

“Treatment with CBMPs reduced the prevalence and intensity of suicidal ideation”

https://www.tandfonline.com/doi/full/10.1080/13811118.2024.2356615

Historical perspective on the therapeutic potential of cannabidiol

pubmed logo

“Cannabidiol (CBD) is one of over 200 cannabinoids present in the Cannabis plant. Unlike the plant’s primary cannabinoid, delta-9-tetrahydrocannabinol (THC), CBD does not produce psychotomimetic effects nor induce dependence. Initially considered an inactive cannabinoid, interest in its pharmacological properties and therapeutic potential has grown exponentially over the last 20 years.

Currently employed as a medication for certain epileptic syndromes, numerous pre-clinical and clinical studies support its potential use in various other disorders. In this chapter, we provide a brief historical overview of how this compound evolved from an “inactive substance” to a multifunctional clinical agent. Additionally, we discuss the current challenges in researching its potential therapeutic effects.”

https://pubmed.ncbi.nlm.nih.gov/39029980/

“In the sixty years that separate the initial studies with CBD from the current state of knowledge, understanding of its therapeutic potential has advanced remarkably. However, much of this potential still needs to be explored through randomized clinical trials to better establish CBD’s role in clinical therapy. This need, though, poses a significant obstacle to its development due to the high costs involved in conducting these trials and the difficulty of obtaining patents.”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000515?via%3Dihub


Beta-caryophyllene in psychiatric and neurological diseases: Role of blood-brain barrier

pubmed logo

“Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma.

Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status.

Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects.

In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.”

https://pubmed.ncbi.nlm.nih.gov/39029971/

“Compelling evidence support the therapeutic potential of beta-caryophyllene in a broad range of conditions. Moreover, this natural compound is already in use with food and cosmetic industries. Altogether, these features may enable its application as a therapeutic adjuvant to conventional drug therapy for often difficult to treat psychiatric and neurological diseases in the near future. “

https://www.sciencedirect.com/science/article/abs/pii/S0083672924000074?via%3Dihub

“Beta-caryophyllene is a dietary cannabinoid”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449371/

Long-term stability and bactericidal properties of galenic formulations of Cannabis sativa oils

pubmed logo

“The long-term stability in real and accelerated time for galenic oils based on full-spectrum cannabis has been studied, using sesame oil as a dilutant. Sesame oil is one of the most used vehicles in the cannabis pharmaceutical industry due to the costs and increased oral bioavailability of cannabinoids. The real-time assays conducted at 25 °C over twelve months demonstrated high stability and showed no significant changes in the composition of cannabinoids, total polyphenols, flavonoids, or antioxidant capacity. In these studies, it was observed that there was no development of microorganisms compromising the stability of the oils over a year. The three oil varieties exhibited a high bactericidal capacity against E. coli, S. aureus, and P. larvae.”

https://pubmed.ncbi.nlm.nih.gov/39025316/

Use and perceptions of Cannabidiol among individuals in treatment for opioid use disorder

pubmed logo

“Background: Cannabidiol (CBD) is a widely available cannabis product with many claims as to potential health benefits including alleviating symptoms related to opioid use disorder (OUD). However, little is known as to how individuals with OUD perceive CBD, to what extent they may already be using CBD, and for what purposes.

Methods: A survey was conducted among individuals receiving treatment for OUD at the Addiction Institute of Mount Sinai in New York City from July 2021 to August 2023. The survey consisted of demographic questions, questions about opioid use, CBD use, and perceptions regarding CBD. Statistical analysis using ordinal logistic regression was employed to compare perceptions between CBD users and non-users while adjusting for age and race.

Results: Among 587 respondents, 550 completed the survey. Among all survey completers, 129 (23%) reported a history of using CBD for a variety of reasons including: anxiety (81, 62.8%), pain (65, 50.4%), sleep (63, 48.8%), depression (62, 48.1%), recreational purposes (32, 24.8%), or for other reasons (8, 6.2%). Of note, 22 (17.1%) respondents reported using CBD to control their addiction and 54 (41.9%) reported using CBD to ease opioid withdrawal symptoms. CBD users demonstrated more positive perceptions regarding its legality (β = 0.673, OR = 1.960, 95% CI [1.211, 3.176], p = .006), social acceptance (β = 0.718, OR = 2.051, 95% CI [1.257, 3.341], p = .004), and therapeutic potential compared to non-users. CBD users also had a more positive view of its potential future role in managing addiction (β = 0.613, OR = 1.846, 95% CI [1.181, 2.887], p = .007).

Conclusions: This study highlights a significant association between CBD usage and progressive views regarding CBD among individuals with OUD, suggesting a growing interest in CBD as a potential adjunctive therapy for individuals in substance use treatment. Some patients are already using CBD for anxiety, pain, sleep, depression, or as a harm reduction intervention to control their addiction or for opioid withdrawal symptoms. These findings underscore the importance of integrating patient perspectives into future research and treatment strategies involving CBD in the context of OUD.”

https://pubmed.ncbi.nlm.nih.gov/39020418/

“The current survey study provides valuable insights into the usage and perceptions of CBD among individuals in treatment for OUD. The findings reveal that some patients are already using CBD for a variety of reasons including anxiety, pain, sleep, depression, or as a harm reduction intervention to control their opioid use or minimize opioid withdrawal symptoms. This is often done without the knowledge of their healthcare providers. Respondents overall had a positive view of CBD suggesting a growing interest in its use as a potential adjunctive therapy for individuals with substance use disorders. The results also emphasize the importance of incorporating patient real-world experience and opinions into the development of future research and treatment approaches. By doing so, we can create more effective, patient-centered strategies that address the complexities of the opioid overdose crisis. Robust clinical research and clear medical guidelines are essential to harness the full potential of CBD as a harm reduction tool, ultimately improving outcomes for those struggling with OUD.”

https://harmreductionjournal.biomedcentral.com/articles/10.1186/s12954-024-01051-5

Impact of Medical Cannabis on Recovery from Playing-Related Musculoskeletal Disorders in Musicians: An Observational Cohort Study

pubmed logo

“Introduction: Playing-related musculoskeletal disorders (PRMDs) are musculoskeletal symptoms that interfere with the ability to play at the level a musician is accustomed to. Musicians have an 84% lifetime prevalence of PRMD. Many types of analgesia are inappropriate for this population due to their risks, but cannabidiol (CBD) has been shown to have anti-inflammatory properties and can reduce the perception of pain. Medical cannabis has also been shown to be safer than other analgesia in terms of serious adverse events. This study explores the impact of medical cannabis for PRMD on perceptions of pain and mental health outcomes.

Methods: Participants (n = 204) completed questionnaires at baseline and six months: the Musculoskeletal Pain Intensity and Interference Questionnaire for Musicians (MPIIQM) and Depression, Anxiety and Stress Scale (DASS-21). Participants self-selected their group: non-cannabis users (n = 42), new medical cannabis users (n = 61), and long-term medical cannabis users (n = 101). Data were analyzed using paired t-tests for within-group and ANOVA for between-group differences.

Results: At six months, there was no difference (p = 0.579) in cannabidiol dose between new (24.87 ± 12.86 mg) and long-term users (21.48 ± 12.50 mg). There was a difference in tetrahydrocannabinol (THC) dose (p = 0.003) between new (3.74 ± 4.22 mg) and long-term users (4.41 ± 5.18 mg). At six months, new cannabis users had a significant reduction in pain intensity as measured by The Musculoskeletal Pain Intensity and Interference Questionnaire for Musicians (MPIIQM40) (p = 0.002). Non-users (p = 0.035), new users (p = 0.002), and long-term cannabis users (p = 0.009) all had significant reductions in pain interference (MPIIQM50) at six months. At six months, non-cannabis (p = 0.022) and long-term cannabis users (p = 0.001) had an improvement in DASS-21. The change in pain intensity was the only difference between groups, F(2, 201) = 3.845, p = 0.023. This difference was between long-term (0.83 ± 0.79) and new users (-2.61 ± 7.15). No serious adverse events occurred, and a minority experienced tiredness, cough, and dry mouth.

Discussion/conclusions: This practice-based evidence demonstrated that the multidimensional approach to care provided by the Musicians’ Clinics of Canada benefited all groups at six months. Medical cannabis significantly reduced pain intensity in new users of medical cannabis with PRMD, and all groups saw improvements in pain interference. In keeping with prior studies, medical cannabis seems to be effective at reducing perceptions of pain, including for PRMD. CBD/THC dosing was within guideline recommendations, and no patients experienced any serious adverse events. Limitations include multiple factors impacting patients’ decisions to opt in or out of medical cannabis. These include cost, comorbidities, and disease chronicity. In conclusion, medical cannabis reduces pain intensity in new users, and when combined with a multidimensional approach to care, patients with PRMD can see improvements in pain as well as mental wellbeing.”

https://pubmed.ncbi.nlm.nih.gov/38998869/

“In conclusion, within our study population over a six-month period, medical cannabis proved to be a safe and potentially beneficial treatment option for musicians with PRMD, with those using medical cannabis for the first time seeing a statistically significant reduction in pain intensity. All patient groups experienced an improvement in some domains of pain experience or mental wellbeing, likely due to the multidimensional model of care. Many patient concerns about medical cannabis include adverse drug effects, addiction, tolerance, losing control, or unusual behavior [21], but hopefully this paper will add further evidence to the literature to help patients make informed decisions in keeping with their preferences and values. A key conclusion from this study is the importance of shared decision making to ensure that patient values, as well as individual symptoms and situations, are considered. N-of-1 trials may be used to further explore optimal individualized treatment plans [49], as well as randomized-controlled trials to build the evidence base for musicians with PRMD in general.”

https://www.mdpi.com/2227-9032/12/13/1335

Cannabidiol effectively prevents oxidative stress and stabilizes hypoxia-inducible factor-1 alpha (HIF-1α) in an animal model of global hypoxia

pubmed logo

“Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant.

As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses.

We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.”

https://pubmed.ncbi.nlm.nih.gov/38987284/

“Our results show that CBD applied in a short time after hypoxia attenuates hypoxia-induced oxidative stress, likely due to its antioxidant activity. To the best of our knowledge, this is also the first report showing that the post-hypoxia treatment with CBD increases the concentration of HIF-1α, which is directly involved in the maintenance of oxygen and iron homeostasis. This indicates that CBD is promising agent for new therapies developed for the treatment of hypoxic injury “

https://www.nature.com/articles/s41598-024-66599-5

Full-spectrum cannabidiol reduces UVB damage through the inhibition of TGF-β1 and the NLRP3 inflammasome

pubmed logo

“The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 μg/mL) and 35% (3.5 μg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-β1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-β1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-β1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.”

https://pubmed.ncbi.nlm.nih.gov/38958000/

https://onlinelibrary.wiley.com/doi/10.1111/php.13993