Anti-inflammatory effects of cannabidiol in early stages of neuroinflammation induced by high-fat diet in cerebral cortex of rats

pubmed logo

“High-fat diet (HFD) contributes to neuroinflammation forming, hence it is crucial to find safe and effective substances that are able to counteract its progress. The anti-inflammatory properties of phytocannabinoids acquired from the Cannabis plant have been widely acknowledged. We evaluated the effects of cannabidiol (CBD) treatment on induced by applying HFD early stages of neuroinflammation in Wistar rat cerebral cortex.

In our 7-week experiment, CBD was injected intraperitoneally over the last 14days at a dose of 10 mg/kg of body weight once a day. The level of arachidonic acid, a precursor to pro-inflammatory eicosanoids, decreased in all analysed lipid classes after CBD administration to the HFD group. Moreover, the extent of diminishing the activity of the omega-6 (n-6) fatty acid pathway by CBD was the greatest in diacylglycerols and phospholipids. Surprisingly, CBD was also capable of downregulating the activity of the omega-3 (n-3) pathway. The expression of enzymes involved in the synthesis of the eicosanoids was significantly increased in the HFD group and subsequently lowered by CBD. Significant changes in various cytokines levels were also discovered.

Our results strongly suggest the ability of CBD to reduce the formation of lipid inflammation precursors in rat cerebral cortex, as a primary event in the development of neurodegenerative diseases. This can raise hopes for the future use of this cannabinoid for therapeutic purposes since it is a substance lacking lasting and severe side effects.”

“To summarize all of the above evidence, the CBD action suggests, that it could hold a great potential for possibly alleviating the inflammatory response by interfering with the eicosanoid synthesis process. As a compound with a fairly simple chemical structure and lipophilic qualities, it has a high ability to penetrate the blood-brain barrier, which is an obstacle that many other pharmaceuticals, whose targets are located within the brain, cannot overcome.”

“Even though the Cannabis plant has been present in the history of humankind for hundreds of years, we ought not to stop looking for new potential applications of its constituents, especially in the clinical medicine of the future, which in the first place should be safe and effective.”

Cannabidiol improves memory and decreases IL-1β serum levels in rats with lipopolysaccharide-induced inflammation

pubmed logo

“Memory improving and anti-inflammatory properties of cannabidiol (CBD) were investigated in an experimental model of lipopolysaccharide (LPS)-induced inflammation.”

“Cannabis sativa is a plant that has been cultivated by humans and utilized in medicine since ancient times.”

“Cannabidiol (CBD) is one of the most important Cannabis-derived molecules,”

“CBD improved spatial working and recognition memory in rats with LPS-induced inflammation. Suppression of IL-1β production could be attributed to the observed effect.”

Removing barriers to accessing medical cannabis for paediatric patients

pubmed logo

“Medical cannabis (MC) may offer therapeutic benefits for children with complex neurological conditions and chronic diseases. In Canada, parents, and caregivers frequently report encountering barriers when accessing MC for their children. These include negative preconceived notions about risks and benefits, challenges connecting with a knowledgeable healthcare provider (HCP), the high cost of MC products, and navigating MC product shortages. In this manuscript, we explore several of these barriers and provide recommendations to decision-makers to enable a family-centered and evidence-based approach to MC medicine and research for children.”

The Therapeutic Potential and Molecular Mechanisms Underlying the Neuroprotective Effects of Sativex® – A Cannabis-derived Spray

pubmed logo

“Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants.

Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders.

The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.”

Topical Noneuphoric Phytocannabinoid Elixir 14 Reduces Inflammation and Mitigates Burn Progression

pubmed logo

“Introduction: Thermal injuries are caused by exposure to a wide variety of agents including heat, electricity, radiation, chemicals, and friction. Early intervention can decrease injury severity by preventing excess inflammation and mitigating burn wound progression for improved healing outcomes.

Previous studies have demonstrated that cannabinoids can trigger anti-inflammatory responses and promote wound closure.

Therefore, the purpose of this study was to investigate whether a topical application of Noneuphoric Phytocannabinoid Elixir 14 (NEPE14) containing a full complement of phytocannabinoids (< 0.3% delta-9-tetrahydrocannabinol or cannabidiol) and other phytochemicals would mitigate burn wound progression in the treatment of deep partial-thickness burn wounds.

Methods: Deep partial-thickness burns were created on the dorsum of four anesthetized pigs and treated with NEPE14, Vehicle control, Silverlon, or gauze. The burns were assessed on postburn days 4, 7, and 14. Assessments consisted of digital photographs, Laser-Speckle imagery (blood perfusion), MolecuLight imagery (qualitative bacterial load), and biopsies for histology and immunohistochemistry (interleukin six and tumor necrosis factor-α).

Results: Topical treatment with NEPE14 significantly (P < 0.001) decreased inflammation (interleukin six and tumor necrosis factor-α) in comparison to control groups. It was also demonstrated that the reduction in inflammation led to mitigation of burn wound progression. In terms of wound healing and presence of bacteria, no statistically significant differences were observed.

Conclusions: Topical treatment of deep partial-thickness burns with NEPE14 decreased wound inflammation and mitigated burn wound progression in comparison to control treatments.”

Antiviral Activities of Cannabis

Book cover

“Despite the history of scientific evidence regarding plants and their products in prophylactics and therapeutics, their applications in healthcare systems are only now gaining momentum.

Plants contain bioactive compounds that target certain viruses to cure or prevent viral diseases and infections.

They provide a rich resource of antiviral drugs. Identifying the antiviral mechanisms in plants has shed light on where they interact with the life cycle of viruses, such as viral entry, replication, assembly, and release.”

Terpenes and cannabidiol against human corona and influenza viruses-Anti-inflammatory and antiviral in vitro evaluation

pubmed logo

“The activity of the terpenes and Cannabidiol (CBD) against human coronavirus (HCoV) strain OC43 and influenza A (H1N1) was evaluated in human lung fibroblasts (MRC-5 cells). Also, we examined whether these ingredients inhibit pro-inflammatory cytokines in peripheral blood mononuclear cells (PBMC).

The tested preparations exhibited both anti-inflammatory and antiviral effects. The combination of terpenes was effective against both HCoV-OC43 and influenza A (H1N1) virus.

The addition of CBD improved the antiviral activity in some, but not all cases. This variation in activity may suggest an antiviral mechanism. In addition, there was a strong correlation between the quantitative results from a cell-viability assay and the cytopathic effect after 72 h, as observed under a microscope.

The anti-inflammatory properties of terpenes were demonstrated using a pro-inflammatory cytokine-inhibition assay, which revealed significant cytokine inhibition and enhanced by the addition of CBD.”

Phytocannabinoids and gingival inflammation: Preclinical findings and a placebo-controlled double-blind randomized clinical trial with cannabidiol

pubmed logo

“Objective: The aim of this study was to: (1) evaluate the anti-inflammatory effects of cannabidiol (CBD) on primary cultures of human gingival fibroblasts (HGFs) and (2) to clinically monitor the effect of CBD in subjects with periodontitis.

Background: The use of phytocannabinoids is a new approach in the treatment of widely prevalent periodontal disease.

Materials and methods: Cannabinoid receptors were analyzed by western blot and interleukin production detected using enzyme immunoassay. Activation of the Nrf2 pathway was studied via monitoring the mRNA level of heme oxygenase-1. Antimicrobial effects were determined by standard microdilution and 16S rRNA screening. In the clinical part, a placebo-control double-blind randomized study was conducted (56 days) in three groups (n = 90) using dental gel without CBD (group A) and with 1% (w/w) CBD (group B) and corresponding toothpaste (group A – no CBD, group B – with CBD) for home use to maintain oral health. Group C used dental gel containing 1% chlorhexidine digluconate (active comparator) and toothpaste without CBD.

Results: Human gingival fibroblasts were confirmed to express the cannabinoid receptor CB2. Lipopolysaccharide-induced cells exhibited increased production of pro-inflammatory IL-6 and IL-8, with deceasing levels upon exposure to CBD. CBD also exhibited antimicrobial activities against Porphyromonas gingivalis, with an MIC of 1.5 μg/mL. Activation of the Nrf2 pathway was also demonstrated. In the clinical part, statistically significant improvement was found for the gingival, gingival bleeding, and modified gingival indices between placebo group A and CBD group B after 56 days.

Conclusions: Cannabidiol reduced inflammation and the growth of selected periodontal pathogenic bacteria. The clinical trial demonstrated a statistically significant improvement after CBD application. No adverse effects of CBD were reported by patients or observed upon clinical examination during the study. The results are a promising basis for a more comprehensive investigation of the application of non-psychotropic cannabinoids in dentistry.”

Health-Promoting Opportunities of Hemp Hull: The Potential of Bioactive Compounds

pubmed logo

“Hemp hull is the outer coat of the hemp seed, derived from the plant Cannabis sativa L., Cannabaceae. While much attention has been paid to hemp seed for its oil, protein and micronutrient content, far less attention has been given to hemp hull, a side stream of hemp processing.

Hemp hull is a source of bioactive compounds, dietary fiber, minerals as well as protein, lipids and carbohydrates.

Of note, two bioactive compounds, n-trans-caffeoyltyramine and n-trans-feruloyltyramine have been identified in hemp hull as key bioactive compounds that support gut health, liver function and other physiological processes. Both of these compounds were identified as agonists of the transcription factor, hepatic nuclear factor-4 alpha which has been implicated in gene expression that governs gut permeability, factors associated with inflammatory bowel diseases, and hepatic lipid homeostasis.

Additionally, the dietary fibers in hemp hull have been demonstrated to be novel prebiotics, which may further amplify hemp hull’s effect on gut health and metabolic health. This review article summarizes the nutritional content of hemp hull, explores the physiological effects of bioactive compounds found in hemp hull, and identifies opportunities for further research on hemp hull for human health benefit.”

Cannabidiol reduces intraventricular hemorrhage brain damage, preserving myelination and preventing blood brain barrier dysfunction in immature rats

pubmed logo

“Intraventricular hemorrhage (IVH) is an important cause of long-term disability in extremely preterm infants, with no current treatment.

This study assessed the potential neuroprotective effects of cannabidiol (CBD) in an IVH model using immature rats.

CBD prevented the long-lasting motor and cognitive consequences of IVH, reduced brain damage in the short- and long-term, protected oligodendroglial cells preserving adequate myelination and maintained BBB integrity.

The protective effects of CBD were associated with the modulation of inflammation, excitotoxicity and oxidative stress.

In conclusion, in immature rats, CBD reduced IVH-induced brain damage and its short- and long-term consequences, showing robust and pleiotropic neuroprotective effects.

CBD is a potential candidate to ameliorate IVH-induced immature brain damage.”

“Cannabidiol (CBD), the main non-euphoric component of Cannabis sativa, has demonstrated neuroprotective effects in different models of acute diffuse or mild to moderate focal hypoxic-ischemic brain damage in newborn animals with a brain developmental stage similar to that of term human newborns.”