Preliminary results from a pilot study examining brain structure in older adult cannabis users and nonusers.

Cover image Psychiatry Research: Neuroimaging

“Exploring associations among cannabis use, brain structure, and cognitive function in older adults offers an opportunity to observe potential harm or benefit of cannabis.

This pilot study assessed structural magnetic resonance imaging in older adults who were either current cannabis users (n = 28; mean age 69.8 years, 36% female) or nonusers (n = 28; mean age 66.8 years, 61% female).

Users and nonusers did not differ in terms of total gray or white matter volumes controlling for age and depression symptoms, but users showed greater regional volume of left putamen, lingual cortex, and rostral middle frontal cortex.

No significant differences between groups were observed in performance on a brief computerized cognitive battery.

These results suggest that cannabis use likely does not have a widespread impact on overall cortical volume while controlling for age.”

https://www.ncbi.nlm.nih.gov/pubmed/30785022

https://www.sciencedirect.com/science/article/pii/S0925492718302683?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis use in youth is associated with limited alterations in brain structure

Image result for neuropsychopharmacology

“There were no significant differences by cannabis group in global or regional brain volumes, cortical thickness, or gray matter density, and no significant group by age interactions were found. Follow-up analyses indicated that values of structural neuroimaging measures by cannabis group were similar across regions, and any differences among groups were likely of a small magnitude. In sum, structural brain metrics were largely similar among adolescent and young adult cannabis users and non-users. Our data converge with prior large-scale studies suggesting small or limited associations between cannabis use and structural brain measures in youth.”

https://www.ncbi.nlm.nih.gov/pubmed/30780151

https://www.nature.com/articles/s41386-019-0347-2

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New Insights in Cannabinoid Receptor Structure and Signaling.

“Cannabinoid has long been used for medicinal purposes. Cannabinoid signaling has been considered the therapeutic targets for treating pain, addiction, obesity, inflammation, and other diseases. Recent studies have suggested that in addition to CB1 and CB2, there are non-CB1 and non-CB2 cannabinoid-related orphan GPCRs including GPR18, GPR55, and GPR119. In addition, CB1 and CB2 display allosteric binding and biased signaling, revealing correlations between biased signaling and functional outcomes. Interestingly, new investigations have indicated that CB1 is functionally present within mitochondria of striated and heart muscles directly regulating intramitochondrial signaling and respiration.

CONCLUSION:

In this review, we summarize the recent progress in cannabinoid-related orphan GPCRs, CB1/CB2 structure, Gi/Gs coupling, allosteric ligands and biased signaling, and mitochondria-localized CB1, and discuss the future promise of this research.”

https://www.ncbi.nlm.nih.gov/pubmed/30767756

http://www.eurekaselect.com/170011/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Spontaneous, anecdotal, retrospective, open-label study on the efficacy, safety and tolerability of cannabis galenical preparation (Bedrocan).

International Journal of Pharmacy Practice banner

“Our main aim was to investigate the short-term therapeutic effects, safety/tolerability and potential side effects of the cannabis galenical preparation (Bedrocan) in patients with a range of chronic conditions unresponsive to other treatments.

METHODS:

In this retrospective, ‘compassionate use’, observational, open-label study, 20 patients (age 18-80 years) who had appealed to our ‘Second Opinion Medical Consulting Network’ (Modena, Italy), were instructed to take sublingually the galenical oil twice a day for 3 months of treatment. The usual starting dose was low (0.5 ml/day) and gradually titrated upward to the highest recommended dose (1 ml/day). Tolerability and adverse effects were assessed at baseline and monthly thereafter during the treatment period through direct contact (email or telephone) or visit if required. Patients’ quality of life was evaluated at baseline and 3 months using the medical outcome short-form health survey questionnaire (SF-36).

KEY FINDINGS:

From baseline to 6 months post-treatment, SF-36 scores showed: reductions in total pain (P < 0.03); improvements in the physical component (P < 0.02); vitality (P < 0.03); social role functioning (P < 0.02); and general health state (P < 0.02). No changes in role limitations (P = 0.02) due to emotional state (e.g. panic, depression, mood alteration) were reported. Monthly reports of psychoactive adverse effects showed significant insomnia reduction (P < 0.03) and improvement in mood (P < 0.03) and concentration (P < 0.01).

CONCLUSIONS:

These data suggest that a cannabis galenical preparation may be therapeutically effective and safe for the symptomatic treatment of some chronic diseases. Further studies on the efficacy of cannabis as well as cannabinoid system involvement in the pathophysiology are warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/30768819

https://onlinelibrary.wiley.com/doi/full/10.1111/ijpp.12514

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-Effect of cannabinoids.

Image result for plos one

“Mammalian microRNAs (miRNAs) play a critical role in modulating the response of immune cells to stimuli.

Cannabinoids are known to exert beneficial actions such as neuroprotection and immunosuppressive activities. However, the underlying mechanisms which contribute to these effects are not fully understood.

We previously reported that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signaling pathways.

Using lipopolysaccharide (LPS) to stimulate BV-2 microglial cells, we examined the role of cannabinoids on the expression of miRNAs. Expression was analyzed by performing deep sequencing, followed by Ingenuity Pathway Analysis to describe networks and intracellular pathways.

miRNA sequencing analysis revealed that 31 miRNAs were differentially modulated by LPS and by cannabinoids treatments. In addition, we found that at the concentration tested, CBD has a greater effect than THC on the expression of most of the studied miRNAs.

The results clearly link the effects of both LPS and cannabinoids to inflammatory signaling pathways. LPS upregulated the expression of pro-inflammatory miRNAs associated to Toll-like receptor (TLR) and NF-κB signaling, including miR-21, miR-146a and miR-155, whereas CBD inhibited LPS-stimulated expression of miR-146a and miR-155. In addition, CBD upregulated miR-34a, known to be involved in several pathways including Rb/E2f cell cycle and Notch-Dll1 signaling.

Our results show that both CBD and THC reduced the LPS-upregulated Notch ligand Dll1 expression. MiR-155 and miR-34a are considered to be redox sensitive miRNAs, which regulate Nrf2-driven gene expression. Accordingly, we found that Nrf2-mediated expression of redox-dependent genes defines a Mox-like phenotype in CBD treated BV-2 cells.

In summary, we have identified a specific repertoire of miRNAs that are regulated by cannabinoids, in resting (surveillant) and in LPS-activated microglia. The modulated miRNAs and their target genes are controlled by TLR, Nrf2 and Notch cross-talk signaling and are involved in immune response, cell cycle regulation as well as cellular stress and redox homeostasis.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Combined tetrahydrocannabinol and cannabidiol to treat pain in epidermolysis bullosa: a report of three cases

British Journal of Dermatology banner

“Epidermolysis bullosa (EB) is a genetic blistering disorder characterized by intense pain related to disease pathology and care‐based interventions.

Opioid‐based therapies underpin pain care in EB; however, they are unable to provide adequate analgesia in a significant proportion of patients.

Cannabinoid‐based medicines (CBMs) have been studied increasingly for pain conditions of various aetiologies and pose as a novel dimension for pain care in EB.

We present three patients with EB who were prescribed pharmaceutical‐grade sublingually administered CBMs comprising tetrahydrocannabinol and cannabidiol.

All three patients reported improved pain scores, reduced pruritus and reduction in overall analgesic drug intake.”

https://www.ncbi.nlm.nih.gov/pubmed/30347109

https://onlinelibrary.wiley.com/doi/full/10.1111/bjd.17341

“Cannabinoids Could Help Manage EB-related Pain, Study Suggests”  https://epidermolysisbullosanews.com/2019/02/08/cannabinoids-could-help-manage-eb-related-pain-study-suggests/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Increased expression of cannabinoid CB2 and serotonin 5-HT1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage.

Neuropharmacology

“Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2(CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical section were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30738036

https://www.sciencedirect.com/science/article/pii/S0028390819300462?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

WHO proposes rescheduling cannabis to allow medical applications

Image result for the bmj journal“The World Health Organization has proposed rescheduling cannabis within international law to take account of the growing evidence for medical applications of the drug, reversing its position held for the past 60 years that cannabis should not be used in legitimate medical practice.”

https://www.bmj.com/content/364/bmj.l574

“WHO RECOMMENDS RESCHEDULING #CANNABIS IN INTERNATIONAL LAW FOR FIRST TIME IN HISTORY. The World Health Organization has suggested that cannabis should be downgraded, or “rescheduled,” given the mounting evidence showing that the drug could prove beneficial in treating a number of health problems. This marks a significant change in WHO’s position, which for the last 60 years has said that cannabis should not be used in medicine, according to an article in the BMJ.” https://www.newsweek.com/who-recommends-rescheduling-cannabis-international-law-first-time-history-1324613
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential.

Publication cover image

“Cannabidiol (CBD) is a highly touted product for many different disorders among the lay press. Numerous CBD products are available, ranging from a US Food and Drug Administration (FDA)-approved product called Epidiolex to products created for medical marijuana dispensaries and products sold in smoke shops, convenience stores, and over the Internet.

The legal status of the non-FDA-approved products differs depending on the source of the CBD and the state, while the consistency and quality of the non-FDA-approved products vary markedly. Without independent laboratory verification, it is impossible to know whether the labeled CBD dosage in non-FDA-approved CBD products is correct, that the delta-9-tetrahydrocannabinol content is <0.3%, and that it is free of adulteration and contamination.

On the Internet, CBD has been touted for many ailments for which it has not been studied, and in those diseases with evaluable human data, it generally has weak or very weak evidence. The control of refractory seizures is a clear exception, with strong evidence of CBD’s benefit. Acute CBD dosing before anxiety-provoking events like public speaking and the chronic use of CBD in schizophrenia are promising but not proven. CBD is not risk free, with adverse events (primarily somnolence and gastrointestinal in nature) and drug interactions. CBD has been shown to increase liver function tests and needs further study to assess its impact on suicidal ideation.”

https://www.ncbi.nlm.nih.gov/pubmed/30730563

https://accp1.onlinelibrary.wiley.com/doi/abs/10.1002/jcph.1387

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Increases Proliferation, Migration, Tubulogenesis, and Integrity of Human Brain Endothelial Cells through TRPV2 Activation.

Molecular Pharmaceutics

“The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 μM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, respectively, and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB.”

https://www.ncbi.nlm.nih.gov/pubmed/30721081

https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b01252

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous