New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota.

Logo of jctr

“The incidence of atherosclerosis is increasing rapidly all over the world. Inflammatory processes have outstanding role in coronary artery disease (CAD) etiology and other atherosclerosis manifestations. Recently attentions have been increased about gut microbiota in many fields of medicine especially in inflammatory diseases like atherosclerosis. Ineffectiveness in gut barrier functions and subsequent metabolic endotoxemia (caused by rise in plasma lipopolysaccharide levels) is associated with low-grade chronic inflammation i.e. a recognized feature of atherosclerosis. Furthermore, the role of trimethylamine-N-oxide (TMAO), a gut bacterial metabolite has been suggested in atherosclerosis development. On the other hand, the effectiveness of gut microbiota modulation that results in TMAO reduction has been investigated. Moreover, considerable evidence supports a role for the endocannabinoid system (ECS) in atherosclerosis pathology which affects gut microbiota, but their effects on atherosclerosis are controversial. Therefore, we presented some evidence about the relationship between gut microbiota and ECS in atherosclerosis. We also presented evidences that gut microbiota modulation by pre/probiotics can have significant influence on the ECS.

Even though there are many questions which have been unanswered, studies demonstrated that mucosal barrier function disruption and subsequent gut microbiota-derived endotoxemia could contribute to cardiometabolic diseases pathogenesis. As well, number of studies revealed that TMAO in systemic circulation can activate macrophages which lead to cholesterol accumulation and subsequent foam cells formation in atherosclerotic lesions. On the other hand, accumulating evidence proposes that ECS involved in many physiological processes that are related to maintenance of gut-barrier function and inflammation regulation. Hence, although present literature review provides beneficial evidence in support of crosstalk between ECS and gut microbiota, additional studies are needed to clarify whether gut microbiota modulation can alter ECS tone and inflammation levels or not.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203867/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Acute administration of beta-caryophyllene prevents endocannabinoid system activation during transient common carotid artery occlusion and reperfusion.

Image result for lipids in health and disease

“The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation.

The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP).

CONCLUSIONS:

Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.”

“beta-caryophyllene (BCP), a sesquiterpene found as a common constituent of the essential oils of numerous food plants and primary component in Cannabis sativa L., is a dietary phytocannabinoid acting as selective agonist for CB2 receptor and peroxisome-proliferator activating receptor alpha (PPAR-alpha)”
“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Up-regulation of heme oxygenase-1 expression and inhibition of disease-associated features by cannabidiol in vascular smooth muscle cells.

Image result for oncotarget

“Aberrant proliferation and migration of vascular smooth muscle cells (VSMC) have been closely linked to the development and progression of cardiovascular and cancer diseases.

The cytoprotective enzyme heme oxygenase-1 (HO-1) has been shown to mediate anti-proliferative and anti-migratory effects in VSMC. This study investigates the effect of cannabidiol (CBD), a non-psychoactive cannabinoid, on HO-1 expression and disease-associated functions of human umbilical artery smooth muscle cells (HUASMC).

HO-1 protein and mRNA were significantly increased by CBD in a time- and concentration-dependent manner. Although the expression of several cannabinoid-activated receptors (CB1, CB2, G protein-coupled receptor 55, transient receptor potential vanilloid 1) was verified in HUASMC, CBD was shown to induce HO-1 via none of these targets. Instead, the CBD-mediated increase in HO-1 protein was reversed by the glutathione precursor N-acetylcysteine, indicating the participation of reactive oxygen species (ROS) signaling; this was confirmed by flow cytometry-based ROS detection.

CBD-induced HO-1 expression was accompanied by inhibition of growth factor-mediated proliferation and migration of HUASMC. However, neither inhibition of HO-1 activity nor knockdown of HO-1 protein attenuated CBD-mediated anti-proliferative and anti-migratory effects. Indeed, inhibition or depletion of HO-1 resulted in induction of apoptosis and intensified CBD-mediated effects on proliferation and migration.

Collectively, this work provides the first indication of CBD-mediated enhancement of HO-1 in VSMC and potential protective effects against aberrant VSMC proliferation and migration. On the other hand, our data argue against a role of HO-1 in CBD-mediated inhibition of proliferation and migration while substantiating its anti-apoptotic role in oxidative stress-mediated cell fate.”

https://www.ncbi.nlm.nih.gov/pubmed/30349652

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26191&path[]=81658

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid Virodhamine is an Endogenous Inhibitor of Human Cardiovascular CYP2J2 Epoxygenase.

 Biochemistry

“The human body contains endogenous cannabinoids (endocannabinoids) that elicit similar effects as Δ9-tetrahydrocanabinol, the principal bioactive component of cannabis.

The endocannabinoid virodhamine (O-AEA) is the constitutional isomer of the well-characterized cardioprotective and anti-inflammatory endocannabinoid anandamide (AEA).

The chemical structures of O-AEA and AEA contain arachidonic acid (AA) and ethanolamine, however AA in O-AEA is connected to ethanolamine via an ester linkage whereas AA in AEA is connected through an amide linkage. We show that O-AEA is found at 9.6 fold higher levels than AEA in porcine left ventricle and is involved in regulating blood pressure and cardiovascular function.

On a separate note, the cytochrome P450 (CYP) epoxygenase CYP2J2 is the most abundant CYP in the heart where it catalyzes the metabolism of AA and AA-derived eCBs to bioactive epoxides that are involved in diverse cardiovascular functions. Herein, using competitive binding studies, kinetic metabolism measurements, molecular dynamics and wound healing assays we have shown that O-AEA is an endogenous inhibitor of CYP2J2 epoxygenase.

Together, the role of O-AEA as an endogenous eCB inhibitor of CYP2J2 may provide a new mode of regulation to control the activity of cardiovascular CYP2J2 in vivo and suggests a potential cross talk between the cardiovascular endocannabinoids and cytochrome P450 system.”

https://www.ncbi.nlm.nih.gov/pubmed/30285425

https://pubs.acs.org/doi/10.1021/acs.biochem.8b00691

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids, the Heart of the Matter

Image result for jaha journal

“Cardiovascular disease (CVD) is a global epidemic representing the leading cause of death in some Western countries. Endocannabinoids and cannabinoid‐related compounds may be a promising approach as therapeutic agents for cardiovascular diseases. This review highlights the potential of cannabinoids and their receptors as targets for intervention.

In summary, the endocannabinoid system is highly active in cardiovascular disease states. Modulation of the ECS, CB1, and TRPV1 antagonism, as well as CB2 agonism, have proven to modulate disease state and severity in CVD. Studies are underway to develop drugs to change the course of cardiovascular diseases.

If therapeutic potential resides in a single molecule component or a derivative, then production and regulation of the therapy are straightforward. If the efficacious agent is a complex mixture that reflects some or all of the secondary metabolome complexity of Cannabis sativa, then safe and consistent production become challenging.”  http://jaha.ahajournals.org/content/7/14/e009099https://www.ncbi.nlm.nih.gov/pubmed/30006489

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Marijuana use and short-term outcomes in patients hospitalized for acute myocardial infarction.

 Image result for plos one

“Marijuana use is increasing worldwide, and it is ever more likely that patients presenting with acute myocardial infarctions (AMI) will be marijuana users. However, little is known about the impact of marijuana use on short-term outcomes following AMI.

Accordingly, we compared in-hospital outcomes of AMI patients with reported marijuana use to those with no reported marijuana use. We hypothesized that marijuana use would be associated with increased risk of adverse outcomes in AMI patients.

Interestingly, marijuana-using patients were significantly less likely to die, experience shock, or require an IABP  post AMI than patients with no reported marijuana use.

These results suggest that, contrary to our hypothesis, marijuana use was not associated with increased risk of adverse short-term outcomes following AMI.

Furthermore, marijuana use was associated with decreased in-hospital mortality post-AMI.”

https://www.ncbi.nlm.nih.gov/pubmed/29995914

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199705

“Myocardial Infarction (Heart Attack)”  https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0021982/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anandamide and endocannabinoid system: an attractive therapeutic approach for cardiovascular disease.

SAGE Journals

“Cardiovascular disease is currently not adequately managed and has become one of the main causes of morbidity and mortality worldwide. Current therapies are inadequate in terms of preventing its progression. There are several limitations, such as poor oral bioavailability, side effects, low adherence to treatment, and high dosage frequency of formulations due to the short half-life of the active ingredients used, among others.

This review aims to highlight the most relevant aspects of the relationship between the cardiovascular system and the endocannabinoid system, with special attention to the possible translational effect of the use of anandamide in cardiovascular health. The deep and detailed knowledge of this interaction, not always beneficial, and that for years has gone unnoticed, is essential for the development of new therapies.

We discuss the most recent and representative results obtained in the field of basic research, referring to the aforementioned subject, emphasizing fundamentally the main role of nitric oxide, renal physiology and its deregulation in pathological processes.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Relation of Cannabis Use and Atrial Fibrillation Among Patients Hospitalized for Heart Failure.

 The American Journal of Cardiology

“Left ventricular dysfunction triggers the activation of the sympathetic nervous system, providing inotropic support to the failing heart and concomitantly increasing the risk of atrial fibrillation (AF). The cardiovascular effects of cannabis have been characterized as biphasic on the autonomic nervous system with an increased sympathetic effect at low doses and an inhibitory sympathetic activity at higher doses. It is unknown if the autonomic effect of cannabis impacts the occurrence of AF in patients with heart failure (HF).

We used data from the Healthcare Cost and Utilization Project-National Inpatient Sample for patients admitted with a diagnosis of HF in 2014. The outcome variable was the diagnosis of AF, with the main exposure being cannabis use. We identified a cannabis user group and a 1:1 propensity-matched non-cannabis user group, each having 3,548 patients. We then estimated the odds of AF diagnosis in cannabis users. An estimated 3,950,392 patients were admitted with a diagnosis of HF in the United States in 2014. Among these, there were 17,755 (0.45%) cannabis users. In the matched cohort, cannabis users were less likely to have AF (19.08% vs 21.39%; AOR 0.87 [0.77 to 0.98]).

In conclusion, cannabis users have lower odds of AF when compared with nonusers, which was not explained by co-morbid conditions, age, insurance type, and socioeconomic status.”

https://www.ncbi.nlm.nih.gov/pubmed/29685570

“Surprising Find: Marijuana Linked with Benefits for Heart Failure Patients. Heart failure patients who used marijuana were also less likely to die in the hospital than those who didn’t use the drug, the study found.”  https://www.livescience.com/60988-marijuana-heart-failure.html

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System and Heart Disease: The Role of Cannabinoid Receptor Type 2.

Image result for Cardiovasc Hematol Disord Drug Targets.

“Decades of research has provided evidence for the role of the endocannabinoid system in human health and disease. This versatile system, consisting of two receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and metabolic enzymes has been implicated in a wide variety of disease states, ranging from neurological disorders to cancer.

CB2 has gained much interest for its beneficial immunomodulatory role that can be obtained without eliciting psychotropic effects through CB1. Recent studies have shed light on a protective role of CB2 in cardiovascular disease, an ailment which currently takes more lives each year in Western countries than any other disease or injury.

By use of CB2 knockout mice and CB2-selective ligands, knowledge of how CB2 signaling affects atherosclerosis and ischemia has been acquired, providing a major stepping stone between basic science and translational clinical research.

Here, we summarize the current understanding of the endocannabinoid system in human pathologies and provide a review of the results from preclinical studies examining its function in cardiovascular disease, with a particular emphasis on possible CB2-targeted therapeutic interventions to alleviate atherosclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29412125

“Researchers suggest that THC and other cannabinoids, which are active at CB2, the cannabinoid receptor expressed on immune cells, may be valuable in treating atherosclerosis.” https://www.medscape.com/viewarticle/787468

“Cardiovascular disease: New use for cannabinoids”  https://www.nature.com/articles/nrd1733

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cholesterol-induced stimulation of platelet aggregation is prevented by a hempseed-enriched diet.

Canadian Journal of Physiology and Pharmacology

“Hypercholesterolemia indirectly increases the risk for myocardial infarction by enhancing the ability of platelets to aggregate.

Diets enriched with polyunsaturated fatty acids (PUFAs) have been shown to reduce the detrimental effects of cholesterol on platelet aggregation.

This study investigated whether dietary hempseed, a rich source of PUFAs, inhibits platelet aggregation under normal and hypercholesterolemic conditions.

The results of this study demonstrate that when hempseed is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous