The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases through Cannabinoid System Modulation-Evidence from In Vivo Studies

jcm-logo“Neurological disorders such as neurodegenerative diseases or traumatic brain injury are associated with cognitive, motor and behavioural changes that influence the quality of life of the patients. Although different therapeutic strategies have been developed and tried until now to decrease the neurological decline, no treatment has been found to cure these pathologies.

In the last decades, the implication of the endocannabinoid system in the neurological function has been extensively studied, and the cannabinoids have been tried as a new promising potential treatment. In this study, we aimed to overview the recent available literature regarding in vivo potential of natural and synthetic cannabinoids with underlying mechanisms of action for protecting against cognitive decline and motor impairments.

The results of studies on animal models showed that cannabinoids in traumatic brain injury increase neurobehavioral function, working memory performance, and decrease the neurological deficit and ameliorate motor deficit through down-regulation of pro-inflammatory markers, oedema formation and blood-brain barrier permeability, preventing neuronal cell loss and up-regulating the levels of adherence junction proteins.

In neurodegenerative diseases, the cannabinoids showed beneficial effects in decreasing the motor disability and disease progression by a complex mechanism targeting more signalling pathways further than classical receptors of the endocannabinoid system. In light of these results, the use of cannabinoids could be beneficial in traumatic brain injuries and multiple sclerosis treatment, especially in those patients who display resistance to conventional treatment.”

https://pubmed.ncbi.nlm.nih.gov/32726998/

https://www.mdpi.com/2077-0383/9/8/2395

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Alleviative effects of Cannabis flower on migraine and headache

 Journal of Integrative Medicine“Few studies to date have measured the real-time effects of consumption of common and commercially available Cannabis products for the treatment of headache and migraine under naturalistic conditions. This study examines, for the first time, the effectiveness of using dried Cannabis flower, the most widely used type of Cannabis product in the United States, in actual time for treatment of headache- and migraine-related pain and the associations between different product characteristics and changes in symptom intensity following Cannabis use.

Results

Ninety-four percent of users experienced symptom relief within a two-hour observation window. The average symptom intensity reduction was 3.3 points on a 0−10 scale (standard deviation = 2.28, Cohen’s d = 1.58), with males experiencing greater relief than females (P < 0.001) and a trend that younger users (< 35 years) experience greater relief than older users (P = 0.08). Mixed effects regression models showed that, among the known (i.e., labeled) product characteristics, tetrahydrocannabinol levels 10% and higher are the strongest independent predictors of symptom relief, and this effect is particularly prominent in headache rather than migraine sufferers (P < 0.05), females (P < 0.05) and younger users (P < 0.001). Females and younger users also appear to gain greater symptom relief from flower labeled as “C. indica” rather than “C. sativa” or other hybrid strains.

Conclusion

These results suggest that whole dried Cannabis flower may be an effective medication for treatment of migraine- and headache-related pain, but the effectiveness differs according to characteristics of the Cannabis plant, the combustion methods, and the age and gender of the patient.”

https://www.sciencedirect.com/science/article/abs/pii/S2095496420300741

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Protective role of neuronal and lymphoid cannabinoid CB 2 receptors in neuropathic pain

 eLife logo“Cannabinoid CB2 receptor (CB2) agonists are potential analgesics void of psychotropic effects.

Peripheral immune cells, neurons and glia express CB2, however the involvement of CB2 from these cells in neuropathic pain remains unresolved. We explored spontaneous neuropathic pain through on-demand self-administration of the selective CB2 agonist JWH133 in wild-type and knockout mice lacking CB2 in neurons, monocytes or constitutively. Operant self-administration reflected drug-taking to alleviate spontaneous pain, nociceptive and affective manifestations. While constitutive deletion of CB2 disrupted JWH133-taking behavior, this behavior was not modified in monocyte-specific CB2 knockouts and was increased in mice defective in neuronal CB2 knockouts suggestive of increased spontaneous pain. Interestingly, CB2-positive lymphocytes infiltrated the injured nerve and possible CB2transfer from immune cells to neurons was found. Lymphocyte CB2depletion also exacerbated JWH133 self-administration and inhibited antinociception.

This work identifies a simultaneous activity of neuronal and lymphoid CB2that protects against spontaneous and evoked neuropathic pain.”

https://pubmed.ncbi.nlm.nih.gov/32687056/

https://elifesciences.org/articles/55582

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacological activation of CB2 receptor protects against ethanol-induced myocardial injury related to RIP1/RIP3/MLKL-mediated necroptosis

 Molecular and Cellular Biochemistry | Home“Chronic ethanol abuse can lead to harmful consequences for the heart, resulting in systolic dysfunction, variability in the heart rate, arrhythmia, and cardiac remodelling. However, the precise molecular mechanism responsible for ethanol-induced cardiomyopathy is poorly understood. In this regard, the present study aimed to describe the RIP1/RIP3/MLKL-mediated necroptotic cell death that may be involved in ethanol-induced cardiomyopathy and characterize CBR-mediated effects on the signalling pathway and myocardial injury.

We performed an ethanol vapour administration experiment to analyse the effects of ethanol on cardiac structure and function in male C57BL/6J mice. Ethanol induced a significant decline in the cardiac structure and function, as evidenced by a decline in ejection fraction and fractional shortening, and an increase in serum Creatine Kinase levels, myocardial collagen content, and inflammatory reaction. Furthermore, ethanol also upregulated the expression levels of necroptosis-related markers such as p-RIP1, p-RIP3, and p-MLKL in the myocardium. Nec-1 treatment exerted significant cardioprotective effects by salvaging the heart tissue, improving the cardiac function, and mitigating inflammation and necroptosis.

In addition, ethanol abuse caused an imbalance in the endocannabinoid system and regulated two cannabinoid receptors (CB1R and CB2R) in the myocardium. Treatment with selective CB2R agonists, JWH-133 or AM1241, markedly improved the cardiac dysfunction and reduced the ethanol-induced necroptosis in the myocardium.

Altogether, our data provide evidence that ethanol abuse-induced cardiotoxicity can possibly be attributed to the RIP1/RIP3/MLKL-mediated necroptosis. Moreover, pharmacological activation of CB2R may represent a new cardioprotective strategy against ethanol-induced cardiotoxicity.”

https://pubmed.ncbi.nlm.nih.gov/32681290/

https://link.springer.com/article/10.1007%2Fs11010-020-03828-1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Structural basis of signaling of cannabinoids receptors: paving a way for rational drug design in controling mutiple neurological and immune diseases

Dundee University rank & funding : Compute Scotland“Cannabinoids (CBs), analgesic drugs used for thousands of years, were first found in Cannabis sativa, and the multiple CBs used medicinally, such as tetrahydrocannabinol (THC), cannabidiol (CBD) and dozens more, have complex structures. In addition to their production by plants, CBs are naturally present in the nerves and immune systems of humans and animals.

Both exogenous and endogenous CBs carry out a variety of physiological functions by engaging with two CB receptors, the CB1 and CB2 receptors, in the human endocannabinoid system (ECS). Both CB1 and CB2 are G protein-coupled receptors that share a 7-transmembrane (7TM) topology. CB1, known as the central CB receptor, is mainly distributed in the brain, spinal cord, and peripheral nervous system. CB1 activation in the human body typically promotes the release of neurotransmitters, controls pain and memory learning, and regulates metabolism and the cardiovascular system.

Clinically, CB1 is a direct drug target for drug addiction, neurodegenerative diseases, pain, epilepsy, and obesity. Unlike the exclusive expression of CB1 in the nervous system, CB2 is mainly distributed in peripheral immune cells. Selective CB2 agonists would have therapeutic potential in the treatment of inflammation and pain and avoid side effects caused by currently used clinical drugs.

Although significant progress has been made in developing agonists toward CB receptors, efficient clinical drugs targeting CB receptors remain lacking due to their complex signaling mechanisms. The recent structural elucidation of CB receptors has greatly aided our understanding of the activation and signal transduction mechanisms of CB receptors.

Recent structural characterizations of CB receptors will greatly facilitate the design of new ligands to modulate the selective functions of CB receptors. Notably, the CBD was approved by the Food and Drug Administration (FDA) in 2018 to treat epilepsy. We now look forward to more drugs targeting these two CB receptors for clinical usage in the near future.”

https://pubmed.ncbi.nlm.nih.gov/32694501/

https://www.nature.com/articles/s41392-020-00240-5

figure1
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The endocannabinoid system

Essays in Biochemistry “Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived ‘phyto’cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.”

https://pubmed.ncbi.nlm.nih.gov/32648908/

“Therapeutic intervention in the dysregulation of the ECS will no doubt involve new phytocannabinoids and various synthetic CBs with which to control an increasing list of ECS- related pathologies.”

https://portlandpress.com/essaysbiochem/article/doi/10.1042/EBC20190086/225762/The-endocannabinoid-system

Anandamide and 2-AG are the principal endogenous ligands that define the classical endocannabinoid signaling system (ECS).

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK

Publication cover image“In this study, we report the potential of cannabidiol, one of the major cannabis constituents, for enhancing osteoblastic differentiation in U2OS and MG-63 cells.

Cannabidiol increased the expression of Angiopoietin1 and the enzyme activity of alkaline phosphatase in U2OS and MG-63. Invasion and migration assay results indicated that the cell mobility was activated by cannabidiol in U2OS and MG-63. Western blotting analysis showed that the expression of tight junction related proteins such as Claudin1, Claudin4, Occuludin1, and ZO1 was increased by cannabidiol in U2OS and MG-63.

Alizarin Red S staining analysis showed that calcium deposition and mineralization was enhanced by cannabidiol in U2OS and MG-63. Western blotting analysis indicated that the expression of osteoblast differentiation related proteins such as distal-less homeobox 5, bone sialoprotein, osteocalcin, type I collagen, Runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase was time dependently upregulated by cannabidiol in U2OS and MG-63. Mechanistically, cannabidiol-regulated osteoblastic differentiation in U2OS and MG-63 by strengthen the protein-protein interaction among RUNX2, OSX, or the phosphorylated p38 mitogen-activated protein kinase (MAPK).

In conclusion, cannabidiol increased Angiopoietin1 expression and p38 MAPK activation for osteoblastic differentiation in U2OS and MG-63 suggesting that cannabidiol might provide a novel therapeutic option for the bone regeneration.”

https://pubmed.ncbi.nlm.nih.gov/32656944/

https://onlinelibrary.wiley.com/doi/abs/10.1002/tox.22996

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Antimicrobial Activity of Cannabinoids

antibiotics-logo“A post-antibiotic world is fast becoming a reality, given the rapid emergence of pathogens that are resistant to current drugs. Therefore, there is an urgent need to discover new classes of potent antimicrobial agents with novel modes of action.

Cannabis sativa is an herbaceous plant that has been used for millennia for medicinal and recreational purposes. Its bioactivity is largely due to a class of compounds known as cannabinoids.

Recently, these natural products and their analogs have been screened for their antimicrobial properties, in the quest to discover new anti-infective agents. This paper seeks to review the research to date on cannabinoids in this context, including an analysis of structure-activity relationships. It is hoped that it will stimulate further interest in this important issue.”

https://pubmed.ncbi.nlm.nih.gov/32668669/

https://www.mdpi.com/2079-6382/9/7/406

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids-Promising Antimicrobial Drugs or Intoxicants with Benefits?

antibiotics-logo“Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance.

Extracts of Cannabis sativa have been used for the treatment of several diseases since ancient times. However, its phytocannabinoid constituents are predominantly associated with psychotropic effects and medical applications far beyond the treatment of infections.

It has been demonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositive bacteria including methicillin-resistant Staphylococcus aureus (MRSA).

As first in vivo efficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promising antimicrobial drug candidates or overhyped intoxicants with benefits.”

https://pubmed.ncbi.nlm.nih.gov/32498408/

https://www.mdpi.com/2079-6382/9/6/297

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Association between marijuana use and electrocardiographic abnormalities by middle age The Coronary Artery Risk Development in Young Adults (CARDIA) Study

 Addiction

“Aims

To evaluate the prevalence of electrocardiogram (ECG) abnormalities in marijuana users as an indirect measure of subclinical cardiovascular disease (CVD).

Findings

Among the 2,585 participants with an ECG at Year 20, mean age was 46, 57% were women, 45% were black. 83% had past exposure to marijuana and 11% were using marijuana currently. One hundred and seventy‐three participants (7%) had major abnormalities and 944 (37%) had minor abnormalities. Comparing current with never use in multivariable‐adjusted models, the OR for major ECG abnormalities was 0.60 (95% CI: 0.32 to 1.15) and for minor ECG abnormalities 1.21 (95% CI: 0.87 to 1.68). Results did not change after stratifying by sex and race.

Cumulative marijuana use was not associated with ECG abnormalities.

Conclusion

In a middle‐aged US population, lifetime cumulative and occasional current marijuana use were not associated with increases in electrocardiogram abnormalities. This adds to the growing body of evidence that occasional marijuana use and cardiovascular disease events and markers of subclinical atherosclerosis are not associated.”

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.15188?af=R

“Using cannabis not associated with heart abnormalities at middle age: study”  https://leaderpost.com/wellness/using-cannabis-not-associated-with-heart-abnormalities-at-middle-age-study/wcm/a43cafba-42b3-4b74-9ea7-50a2cf0d62e3/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous