Tetrahydrocannabinol: cannabidiol oromucosal spray for treating symptoms of multiple sclerosis spasticity: newest evidence

Future Medicine Logo

“Proceedings of an Almirall-sponsored satellite symposium held at the 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis in Berlin, Germany, 10 October 2018.” https://www.futuremedicine.com/doi/10.2217/nmt-2018-0048

“Newest evidence for tetrahydrocannabinol:cannabidiol oromucosal spray from postapproval pragmatic studies. Postapproval studies have an essential role in demonstrating that an intervention is effective and well tolerated during use in daily clinical practice. Numerous large observational and registry studies of tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray have been conducted subsequent to its approval in Europe in 2011. Collectively, these studies provide valuable insight into various aspects of THC:CBD spray during real-world use in patients with multiple sclerosis spasticity, including its long-term effectiveness and tolerability. The Italian Medicines Agency’s web-based registry is the largest observational study of THC:CBD oromucosal spray conducted to date, reporting on more than 1600 patients prescribed THC:CBD spray since it was introduced in Italy in 2013, and further supporting its effectiveness and tolerability profile.” https://www.futuremedicine.com/doi/10.2217/nmt-2018-0049

“Newest evidence for tetrahydrocannabinol:cannabidiol oromucosal spray from randomized clinical trials. Subsequent to EMA approval of tetrahydrocannabinol (THC): cannabidiol (CBD) oromucosal spray based on results of various studies, including an enriched-design clinical trial, two newer postapproval randomized trials have confirmed its efficacy and safety for treating resistant multiple sclerosis spasticity, while simultaneously addressing specific authorities’ concerns. A double-blind, placebo-controlled, Phase IV trial, conducted as part of the EMA’s risk management plan, found no effect of THC:CBD spray on cognition and mood after 50 weeks of treatment. In the Sativex® as add-on therapy versus further optimized first-line ANTispastics (SAVANT)  study, add-on THC:CBD spray was significantly more effective than readjusting standard antispasticity therapy and provided new evidence of efficacy as requested by German authorities. SAVANT results support practical recommendations for treating resistant multiple sclerosis spasticity in daily practice.”  https://www.futuremedicine.com/doi/10.2217/nmt-2018-0050

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Real life Experience of Medical Cannabis Treatment in Autism: Analysis of Safety and Efficacy.

Scientific Reports

“There has been a dramatic increase in the number of children diagnosed with autism spectrum disorders (ASD) worldwide. Recently anecdotal evidence of possible therapeutic effects of cannabis products has emerged.

The aim of this study is to characterize the epidemiology of ASD patients receiving medical cannabis treatment and to describe its safety and efficacy.

We analysed the data prospectively collected as part of the treatment program of 188 ASD patients treated with medical cannabis between 2015 and 2017. The treatment in majority of the patients was based on cannabis oil containing 30% CBD and 1.5% THC. Symptoms inventory, patient global assessment and side effects at 6 months were primary outcomes of interest and were assessed by structured questionnaires.

After six months of treatment 82.4% of patients (155) were in active treatment and 60.0% (93) have been assessed; 28 patients (30.1%) reported a significant improvement, 50 (53.7%) moderate, 6 (6.4%) slight and 8 (8.6%) had no change in their condition. Twenty-three patients (25.2%) experienced at least one side effect; the most common was restlessness (6.6%).

Cannabis in ASD patients appears to be well tolerated, safe and effective option to relieve symptoms associated with ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/30655581

https://www.nature.com/articles/s41598-018-37570-y

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain

Image result for frontiers in plant science

“The current wave of excitement in Cannabis commerce has translated into a flurry of research on alternative sources, particularly yeasts, and complex systems for laboratory production have emerged, but these presuppose that single compounds are a desirable goal. Rather, the case for Cannabis synergy via the “entourage effect” is currently sufficiently strong as to suggest that one molecule is unlikely to match the therapeutic and even industrial potential of Cannabis itself as a phytochemical factory.

These studies and others provide a firm foundation for Cannabis synergy, and support for botanical drug development vs. that of single components, or production via fermentation methods in yeast or other micro-organisms.

This article has briefly outlined recently technological attempts to “reinvent the phytocannabinoid wheel.” Cogent arguments would support that it can be done, but should it be done? The data supporting the existence of Cannabis synergy and the astounding plasticity of the Cannabis genome suggests a reality that obviates the need for alternative hosts, or even genetic engineering of Cannabis sativa, thus proving that, “The plant does it better.””
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior.

 Image result for nature medicine“Major depressive disorder is a devastating psychiatric disease that afflicts up to 17% of the world’s population. Postmortem brain analyses and imaging studies of patients with depression have implicated basal lateral amygdala (BLA) dysfunction in the pathophysiology of depression. However, the circuit and molecular mechanisms through which BLA neurons modulate depressive behavior are largely uncharacterized. Here, in mice, we identified that BLA cholecystokinin (CCK) glutamatergic neurons mediated negative reinforcement via D2 medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and that chronic social defeat selectively potentiated excitatory transmission of the CCKBLA-D2NAc circuit in susceptible mice via reduction of presynaptic cannabinoid type-1 receptor (CB1R). Knockdown of CB1R in the CCKBLA-D2NAc circuit elevated synaptic activity and promoted stress susceptibility. Notably, selective inhibition of the CCKBLA-D2NAc circuit or administration of synthetic cannabinoids in the NAc was sufficient to produce antidepressant-like effects. Overall, our studies reveal the circuit and molecular mechanisms of depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30643290

https://www.nature.com/articles/s41591-018-0299-9

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”  https://www.ncbi.nlm.nih.gov/pubmed/20332000

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Crystal Structure of the Human Cannabinoid Receptor CB2.

Image result for cell journal

“The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases.

Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257’s unexpected opposing functional profile of CB2 antagonism versus CB1 agonism.

Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.”

https://www.ncbi.nlm.nih.gov/pubmed/30639103

https://linkinghub.elsevier.com/retrieve/pii/S0092867418316258

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex.

Image result for cell journal

“Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Giactivation by CB1.

Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities.”

https://www.ncbi.nlm.nih.gov/pubmed/30639101

https://linkinghub.elsevier.com/retrieve/pii/S0092867418315654

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis and Mood Disorders.

 “The present review will provide an overview of the neurobiology, epidemiology, clinical impact, and treatment of cannabis use disorder (CUD) in mood disorders.

Patients with mood disorders including major depressive disorder (MDD) and bipolar disorder (BD) have higher rates of cannabis use, and CUD compared to the general population. Reasons for this association are not clear, nor are the putative therapeutic effects of cannabis use, or its components delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), in these illnesses.

Cannabis use may be associated mood disorders, but more research is needed to increase our understanding of the mechanisms for this association, and to develop more effective treatments for this comorbidity.”

https://www.ncbi.nlm.nih.gov/pubmed/30643708

https://link.springer.com/article/10.1007%2Fs40429-018-0214-y

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

∆9-Tetrahydrocannabinol, a major marijuana component, enhances the anesthetic effect of pentobarbital through the CB1 receptor.

 “∆9 Tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), major psychoactive constituents of marijuana, induce potentiation of pentobarbital-induced sleep in mice.

We have elucidated the mechanism of enhancement of the anesthetic effect of pentobarbital by cannabinoids.

These results suggest that binding of ∆9-THC to the CB1 receptor is involved in the synergism with pentobarbital, and that potentiating effect of CBD with pentobarbital may differ from that of ∆9-THC. We successfully demonstrated that ∆9-THC enhanced the anesthetic effect of pentobarbital through the CB1 receptor.”

https://www.ncbi.nlm.nih.gov/pubmed/30636988

“The pharmacological results indicate the effect of ∆9-THC co-administered with pentobarbital was a synergistic, but not additive, action in mice. Further evidence suggests the CB1 receptor plays an important role as a trigger in potentiating pentobarbital-induced sleep by ∆9-THC.”

https://link.springer.com/article/10.1007%2Fs11419-018-0457-2

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Latitudinal Adaptation and Genetic Insights Into the Origins of Cannabis sativa L.

Image result for frontiers in plant science

“Cannabis is one of the most important industrial crops distributed worldwide. However, the phylogeographic structure and domestication knowledge of this crop remains poorly understood.

In this study, sequence variations of five chloroplast DNA (cpDNA) regions were investigated to address these questions. For the 645 individuals from 52 Cannabis accessions sampled (25 wild populations and 27 domesticated populations or cultivars), three haplogroups (Haplogroup H, M, L) were identified and these lineages exhibited distinct high-middle-low latitudinal gradients distribution pattern.

This pattern can most likely be explained as a consequence of climatic heterogeneity and geographical isolation. Therefore, we examined the correlations between genetic distances and geographical distances, and tested whether the climatic factors are correlated with the cpDNA haplogroup frequencies of populations. The “isolation-by-distance” models were detected for the phylogeographic structure, and the day-length was found to be the most important factor (among 20 BioClim factors) that influenced the population structures.

Considering the distinctive phylogeographic structures and no reproductive isolation among members of these lineages, we recommend that Cannabis be recognized as a monotypic genus typified by Cannabis sativa L., containing three subspecies: subsp. sativa, subsp. Indica, and subsp. ruderalis. Within each haplogroup which possesses a relatively independent distribution region, the wild and domesticated populations shared the most common haplotypes, indicating that there are multiregional origins for the domesticated crop.

Contrast to the prevalent Central-Asia-Origin hypothesis of C. saltiva, molecular evidence reveals for the first time that the low latitude haplogroup (Haplogroup L) is the earliest divergent lineage, implying that Cannabis is probably originated in low latitude region.”

https://www.ncbi.nlm.nih.gov/pubmed/30627133

https://www.frontiersin.org/articles/10.3389/fpls.2018.01876/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer.

 Related image“In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain.

The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety.

Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2.

CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds.

In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials.

CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models.

These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity.

In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.”

https://www.ncbi.nlm.nih.gov/pubmed/30627539

https://www.hindawi.com/journals/bmri/2018/1691428/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous