Cannabidiol and Neurodegeneration: From Molecular Mechanisms to Clinical Benefits

pubmed logo

“Neurodegenerative disorders (NDs) such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce malfunction of psycho-motor functions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of its associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation.

Cannabidiol is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo.

Cannabidiol has gained attention as a promising therapeutic drug candidate for the management of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as its clinical applications in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.”

https://pubmed.ncbi.nlm.nih.gov/38969143/

https://www.sciencedirect.com/science/article/abs/pii/S1568163724002046?via%3Dihub

Cannabinoids’ Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases

pubmed logo

“Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases.

The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases.

To our knowledge, few reviews are devoted to cannabinoids’ impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.”

https://pubmed.ncbi.nlm.nih.gov/38928109/

“The increasing acceptance of cannabinoids caused novel preclinical research of neurodegenerative diseases, which was collected and analyzed in this review. These studies demonstrated the neuroprotective properties of many cannabinoids through various cellular and molecular pathways in neurodegenerative diseases. The strengthening connection between the periphery and the CNS in the context of neurodegenerative diseases, together with the extensive immune activities of cannabinoids in both arenas, shows the complexity of immune modulation and the enormous therapeutic potential of cannabinoids in neurodegenerative diseases, which are very difficult to manage.”

https://www.mdpi.com/1422-0067/25/12/6402

Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders

pubmed logo

“The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis.

This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer’s Disease, multiple sclerosis, or Parkinson’s disease.

The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis.

The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.”

https://pubmed.ncbi.nlm.nih.gov/38931480/

“Since neurodegenerative diseases like Alzheimer’s, Parkinson’s, multiple sclerosis, Huntington’s, and amyotrophic lateral sclerosis present significant healthcare and therapeutic challenges due to not only their complex etiology or pathophysiology but symptoms severity as well, it is important to keep the attention on improving constantly effective therapeutic methods devoted to neurodegenerative diseases treatment.

Recent studies indicate cannabinoids, particularly from Cannabis sativa, to hold promise in addressing key pathological processes associated with these disorders.

Cannabinoids, especially THC and CBD, demonstrate anti-aggregative effects, modulating the endocannabinoid system and interacting with cannabinoid receptors 1 and 2, offering potential in mitigating protein aggregation seen in disorders like multiple sclerosis. They also activate CBR1, protecting against mitochondrial dysfunction, crucial in diseases disrupting energy distribution, such as demyelination.

Emerging evidence suggests that vitamin B12, essential for cellular processes, could complement therapeutic strategies, potentially enhancing the effects of CBD. Additionally, CBD shows promise in reversing locomotor changes in Parkinson’s disease independently of NPR-19 receptors, while also protecting dopaminergic neurons and reducing reactive oxygen species accumulation. Thus, the integration of nanoparticles of β-caryophyllene, a CB2R binder, as explored by Alberti et al. (2020) [4], represents potential advancement in developing therapies that improve drug BBB crossing and enhance overall treatment efficacy, moreover, accordingly, the process aimed at combining RNA aptamers with cannabinoids and vitamin B12 may offer precise targeted therapies, but rigorous testing is necessary before clinical use.

This combined approach represents a promising frontier in neurodegenerative disease treatment, highlighting ongoing research into cannabinoids’ effects and applications across various disease contexts. Understanding their interaction with mitochondrial function and cellular communication holds potential for novel therapeutic strategies. Further investigation is needed to fully grasp cannabinoids’ effects and applications in diverse disease contexts.”

https://www.mdpi.com/1424-8247/17/6/813

Cannabinol Regulates the Expression of Cell Cycle-Associated Genes in Motor Neuron-like NSC-34: A Transcriptomic Analysis

pubmed logo

“Cannabinoids are reported to have neuroprotective properties and play a role in neurogenesis and neuroplasticity in in vitro and in vivo models. Cannabinol (CBN) is a minor cannabinoid produced by the degradation of Δ9-tetrahydrocannabinol in Cannabis sativa L. and exhibits anti-oxidant, analgesic, anti-bacterial, and anti-inflammatory effects.

In this study, we explored the biological effects of 20 µM CBN (6.20 µg/mL) on differentiated NSC-34 cells by MTT assay and next-generation sequencing analysis on the transcriptome. KEGG and Gene Ontology enrichment analyses have been performed to evaluate potential CBN-associated processes.

Our results highlighted the absence of any cytotoxic effect of CBN. The comparative transcriptomic analysis pointed out the downregulation of Cdkn2aCdkn2c and Cdkn2d genes, which are known to suppress the cell cycle. Ccne2Cdk2Cdk7Anapc11Anapc10Cdc23Cdc16Anapc4Cdc27Stag1Smc3Smc1aNipblPds5aPds5b, and Wapl genes, renowned for their role as cell cycle progression activators, were instead upregulated. Our work suggests that CBN regulates the expression of many genes related to the cell cycle, which are required for axonal maturation, migration, and synaptic plasticity, while not affecting the expression of genes involved in cell death or tumorigenesis.”

https://pubmed.ncbi.nlm.nih.gov/38927547/

“The results obtained could be a starting point for testing CBN on models of motor neuron diseases characterized by synaptic dysfunctions and aberrant reactivation of the cell cycle leading to cell death.”

https://www.mdpi.com/2227-9059/12/6/1340

Medicinal cannabis in neurodegenerative disorders: an open label, dose finding, safety and efficacy study

pubmed logo

“Aim: Currently, there exist no curative treatments for neurodegenerative disorders. Recently, there has been a resurgence of interest in the use of medicinal cannabis to improve neurological conditions. 

Methods: A 12-month, open label, dose-finding, safety and efficacy study was conducted including 48 subjects with a variety of neurodegenerative disorders. 

Results: In our participants, we observed a reduction in pain, improved sleep, enhanced well-being and less agitation. 

Conclusion: Our findings suggest that medicinal cannabis might be useful in patients with neurodegenerative disorders in controlling pain, enhancing sleep, reducing difficult behaviors, controlling unusual and complex symptoms when other treatments have failed – this offers medicinal cannabis a role in palliation.”

https://pubmed.ncbi.nlm.nih.gov/38639578/

The Therapeutic Potential and Molecular Mechanisms Underlying the Neuroprotective Effects of Sativex® – A Cannabis-derived Spray

pubmed logo

“Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants.

Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders.

The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.”

https://pubmed.ncbi.nlm.nih.gov/38318827/

https://www.eurekaselect.com/article/138318

Cannabis for the treatment of amyotrophic lateral sclerosis: What is the patients’ view?

pubmed logo

“Cannabis may have therapeutic benefits to relieve symptoms of amyotrophic lateral sclerosis (ALS) thanks to its pleiotropic pharmacological activity. This study is the first to present a large questionnaire-based survey about the “real-life” situation regarding cannabis use in the medical context in ALS patients in France. There were 129 respondents and 28 reported the use of cannabis (21.7%) to relieve symptoms of ALS. Participants mostly reported the use of cannabidiol (CBD) oil and cannabis weed and declared benefits both on motor (rigidity, cramps, fasciculations) and non-motor (sleep quality, pain, emotional state, quality of life, depression) symptoms and only eight reported minor adverse reactions (drowsiness, euphoria and dry mouth). Even if cannabis is mostly used outside medical pathways and could expose patients to complications (street and uncontrolled drugs, drug-drug interactions, adverse effects…), most of the participants reported “rational” consumption (legal cannabinoids, with only few combustion and adverse reactions). Despite some limitations, this study highlights the need for further research on the potential benefits of cannabis use for the management of ALS motor and non-motor symptoms. Indeed, there is an urgent need and call for and from patients to know more about cannabis and secure its use in a medical context.”

https://pubmed.ncbi.nlm.nih.gov/37460332/

https://www.sciencedirect.com/science/article/abs/pii/S0035378723009712?via%3Dihub

Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders

molecules-logo

“The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines.

Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease.

A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood.

This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules.

The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.”

https://pubmed.ncbi.nlm.nih.gov/35956911/

“Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. The preclinical studies summarised in this review supported the therapeutic use of CBD in treating neurological disorders from its action in addressing microglia-mediated neuroinflammation. The findings of this review shed light on the development of CBD and relevant compounds as novel and more advantageous therapeutics to prevent or treat neurological disorders by targeting microglia-mediated neuroinflammation.”

https://www.mdpi.com/1420-3049/27/15/4961/htm


Effects of Cannabidiol in a Caenorhabditis Elegans Amyotrophic Lateral Sclerosis Model

“Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by the progressive death of motor neurons. Cannabidiol, the second most prevalent cannabinoid in the Cannabis sativa plant, is a potential therapeutic tool for ALS due to its antioxidant, anti-inflammatory, and anti-spasticity effects, as well as its complementary role in treating other neurodegenerative diseases. In SOD1-G93A murine ALS models, cannabinoids have been shown to slow disease progression, extending lifespan and increasing motor function. However, the effects of specific cannabinoids-including cannabidiol-are yet undefined and their functions slowing disease progression are unknown. To advance this understanding we aim to study the effects of cannabidiol treatment in a Caenorhabditis elegans ALS model: a SOD-1 mutant transgenic strain with SOD-1 aggregation in muscular cells. We will use a death assay to measure the lifespan of SOD-1 mutant C. elegans and cannabidiol-treated SOD-1 mutant C. elegans to investigate whether treatment with cannabidiol impacts the lifespan of SOD-1 mutants. To assess mechanosensation, we will touch C. elegans with sutures of various sizes, based on the Von Frey filaments touch response assay in humans. We will develop a novel computational analysis system to measure C. elegans movement in response to touch. We will then compare the motor response of the SOD-1 mutant transgenic strain to wild type and study if cannabidiol modulates a possible change in motor response. This study will evaluate the functions of cannabidiol as a potential therapeutic tool in ALS using a SOD-1 mutant C. elegans model.”

https://pubmed.ncbi.nlm.nih.gov/35555765/

https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.0R317

Cannabinoids for the treatment of refractory neuropathic pruritus in amyotrophic lateral sclerosis: A case report

Journals | SAGE Publications Inc“Background: Neuropathic symptoms have a wide variety of manifestations, ranging from pain to pruritus. Neuropathic pruritus is a type of chronic pruritus related to damaged small fibers. Cannabinoids have evidence to manage neuropathic symptoms. We present a case of refractory neuropathic pruritus that was successfully managed with the use of oral cannabinoids.

Case presentation: A 60-year-old male with amyotrophic lateral sclerosis with ongoing pruritus despite the use of standard neuropathic therapies.

Formulation of a plan: A balanced oral cannabinoid from a licensed producer was preferred as it has evidence for neuropathic symptoms and is generally well tolerated.

Outcome: The patient showed improvement to his pruritus score from 7/10 to 3/10. There was initial increased sedation but tolerance developed quickly.

Lessons learned from case: Cannabinoids are possibly safe and effective in management of neuropathic pruritus.”

https://pubmed.ncbi.nlm.nih.gov/34510973/

“Neuropathic pruritus is a chronic form of pruritus that causes significant symptom burden and can be difficult to treat. Cannabinoids have evidence to manage chronic neuropathic pain. This case demonstrates the safe and effective use of cannabinoids to manage neuropathic pruritus.”

https://journals.sagepub.com/doi/10.1177/02692163211045314