The effectiveness of self-directed medical cannabis treatment for pain

Complementary Therapies in Medicine“The prior medical literature offers little guidance as to how pain relief and side effect manifestation may vary across commonly used and commercially available cannabis product types. We used the largest dataset in the United States of real-time responses to and side effect reporting from patient-directed cannabis consumption sessions for the treatment of pain under naturalistic conditions in order to identify how cannabis affects momentary pain intensity levels and which product characteristics are the best predictors of therapeutic pain relief.

Between 06/06/2016 and 10/24/2018, 2987 people used the ReleafApp to record 20,513 cannabis administration measuring cannabis’ effects on momentary pain intensity levels across five pain categories: musculoskeletal, gastrointestinal, nerve, headache-related, or non-specified pain. The average pain reduction was –3.10 points on a 0–10 visual analogue scale (SD = 2.16, d = 1.55, p < .001).

Whole Cannabis flower was associated with greater pain relief than were other types of products, and higher tetrahydrocannabinol (THC) levels were the strongest predictors of analgesia and side effects prevalence across the five pain categories. In contrast, cannabidiol (CBD) levels generally were not associated with pain relief except for a negative association between CBD and relief from gastrointestinal and non-specified pain.

These findings suggest benefits from patient-directed, cannabis therapy as a mid-level analgesic treatment; however, effectiveness and side effect manifestation vary with the characteristics of the product used.

The results suggest that Cannabis flower with moderate to high levels of tetrahydrocannabinol is an effective mid-level analgesic.”

https://www.sciencedirect.com/science/article/abs/pii/S0965229919308040

“UNM study confirms cannabis flower is an effective mid-level analgesic medication for pain treatment. Cannabis likely has numerous constituents that possess analgesic properties beyond THC, including terpenes and flavonoids, which likely act synergistically for people that use whole dried cannabis flower, Cannabis offers the average patient an effective alternative to using opioids for general use in the treatment of pain with very minimal negative side effects for most people.”  https://news.unm.edu/news/unm-study-confirms-cannabis-flower-is-an-effective-mid-level-analgesic-medication-for-pain-treatment

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

THE EFFECTS OF MEDICAL MARIJUANA DISPENSARIES ON ADVERSE OPIOID OUTCOMES

 Publication cover image“As more states enact laws liberalizing marijuana use and the U.S. opioid epidemic surges to unprecedented levels, understanding the relationship between marijuana and opioids is growing increasingly important.

Using a unique self‐constructed marijuana dispensary dataset, I estimate the impact of increased marijuana access on opioid‐related harms.

I exploit within‐ and across‐state variation in dispensary openings and find county‐level prescription opioid‐related fatalities decline by 11% following the opening a dispensary.

The estimated dispensary effects are qualitatively similar for opioid‐related admissions to treatment facilities. These results are strongest for males and suggest a substitutability between marijuana and opioids.”

https://onlinelibrary.wiley.com/doi/full/10.1111/ecin.12825

“I find that core-based statistical areas (CBSAs) with dispensary openings experience a 20 percentage point relative decrease in painkiller treatment admissions over the first two years of dispensary operations.”

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3012381

Access to medical marijuana reduces opioid prescriptions”  https://www.health.harvard.edu/blog/access-to-medical-marijuana-reduces-opioid-prescriptions-2018050914509

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

THE EFFECTS OF RECREATIONAL MARIJUANA LEGALIZATION AND DISPENSING ON OPIOID MORTALITY

Publication cover image“This study documents how the changing legal status of marijuana has impacted mortality in the United States over the past two decades.

We use a difference‐in‐difference approach to estimate the effect of medical marijuana laws (MML) and recreational marijuana laws (RML) on fatalities from opioid overdoses, and we find that marijuana access induces sharp reductions in opioid mortality rates.

Our research corroborates prior findings on MMLs and offers the first causal estimates of RML impacts on opioid mortality to date, the latter of which is particularly important given that RMLs are far more expansive in scope and reach than MMLs.

In our preferred econometric specification, we estimate that RMLs reduce annual opioid mortality in the range of 20%–35%, with particularly pronounced effects for synthetic opioids. In further analysis, we demonstrate how RML impacts vary among demographic groups, shedding light on the distributional consequences of these laws.

Our findings are especially important and timely given the scale of the opioid crisis in the United States and simultaneously evolving attitudes and regulations on marijuana use.”

https://onlinelibrary.wiley.com/doi/full/10.1111/ecin.12819

“Marijuana legalization reduces opioid deaths. A new Economic Inquiry study finds that marijuana access leads to reductions in opioid-related deaths.” https://medicalxpress.com/news/2019-08-marijuana-legalization-opioid-deaths.html
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Use Motivations among Adults Prescribed Opioids for Pain versus Opioid Addiction.

Pain Management Nursing“Cannabis has been linked to reduced opioid use, although reasons for cannabis use among adults prescribed opioids are unclear.

The purpose of this study was to determine whether motivations for cannabis use differ between adults prescribed opioids for persistent pain versus those receiving opioids as medication-assisted treatment for opioid use disorder.

RESULTS:

More than half the sample (n = 122) reported current, daily cannabis use and 63% reported pain as a motivation for use. Adults with persistent pain were more likely to be older, female, and have higher levels of education (p < .05). Adults with opioid use disorder were more likely to report “enhancement” (p < .01) and relief of drug withdrawal symptoms (p < .001) as motivations for cannabis use. The most common reasons for cannabis use in both populations were social and recreational use and pain relief.

CONCLUSIONS:

Both studied populations have unmet health needs motivating them to use cannabis and commonly use cannabis for pain. Persistent pain participants were less likely to use cannabis for euphoric effects or withdrawal purposes. Nurses should assess for cannabis use, provide education on known risks and benefits, and offer options for holistic symptom management.”

https://www.ncbi.nlm.nih.gov/pubmed/31375419

https://www.painmanagementnursing.org/article/S1524-9042(19)30096-7/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

Image result for frontiers in immunology“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−)-trans9-tetrahydrocannabinol (THC), (−)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.

Active Components of Cannabis sativa (Hemp)—Phytocannabinoids (pCBs) and Beyond

It is known since ancient times that consumption of different parts of the plant Cannabis sativa can lead to psychotropic effects. Moreover, mostly, but not exclusively because of its potent analgesic actions, it was considered to be beneficial in the management of several diseases. Nowadays it is a common knowledge that these effects were mediated by the complex mixture of biologically active substances produced by the plant. So far, at least 545 active compounds have been identified in it, among which, the best-studied ones are the so-called pCBs. It is also noteworthy that besides these compounds, ca. 140 different terpenes [including the potent and selective CB2 agonist sesquiterpene β-caryophyllene (BCP)], multiple flavonoids, alkanes, sugars, non-cannabinoid phenols, phenylpropanoids, steroids, fatty acids, and various nitrogenous compounds can be found in the plant, individual biological actions of which are mostly still nebulous. Among the so far identified > 100 pCBs, the psychotropic (−)-trans9-tetrahydrocannabinol (THC) and the non-psychotropic (−)-cannabidiol (CBD) are the best-studied ones, exerting a wide-variety of biological actions [including but not exclusively: anticonvulsive, analgesic, antiemetic, and anti inflammatory effects]. Of great importance, pCBs have been shown to modulate the activity of a plethora of cellular targets, extending their impact far beyond the “classical” (see above) cannabinoid signaling. Indeed, besides being agonists [or in some cases even antagonists of CB1 and CB2 cannabinoid receptors, some pCBs were shown to differentially modulate the activity of certain TRP channels, PPARs, serotonin, α adrenergic, adenosine or opioid receptors, and to inhibit COX and lipoxygenase enzymes, FAAH, EMT, etc.. Moreover, from a clinical point-of-view, it should also be noted that pCBs can indirectly modify pharmacokinetics of multiple drugs (e.g., cyclosporine A) by interacting with several cytochrome P 450 (CYP) enzymes. Taken together, pCBs can be considered as multitarget polypharmacons, each of them having unique “molecular fingerprints” created by the characteristic activation/inhibition pattern of its locally available cellular targets.

Concluding Remarks—Lessons to Learn from Cannabis

Research efforts of the past few decades have unambiguously evidenced that ECS is one of the central orchestrators of both innate and adaptive immune systems, and that pure pCBs as well as complex cannabis-derivatives can also deeply influence immune responses. Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases. Moreover, in depth analysis of the (quite complex) mechanism-of-action of the most promising pCBs is likely to shed light to previously unknown immune regulatory mechanisms and can therefore pave new “high”-ways toward developing completely novel classes of therapeutic agents to manage a wide-variety of diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

www.frontiersin.org

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacology of Medical Cannabis.

 “The Cannabis plant has been used for many of years as a medicinal agent in the relief of pain and seizures. It contains approximately 540 natural compounds including more than 100 that have been identified as phytocannabinoids due to their shared chemical structure. The predominant psychotropic component is Δ9-tetrahydrocannabinol (Δ9-THC), while the major non-psychoactive ingredient is cannabidiol (CBD). These compounds have been shown to be partial agonists or antagonists at the prototypical cannabinoid receptors, CB1 and CB2. The therapeutic actions of Δ9-THC and CBD include an ability to act as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds and as protective agents in neurodegeneration. However, there is a lack of well-controlled, double blind, randomized clinical trials to provide clarity on the efficacy of either Δ9-THC or CBD as therapeutics. Moreover, the safety concerns regarding the unwanted side effects of Δ9-THC as a psychoactive agent preclude its widespread use in the clinic. The legalization of cannabis for medicinal purposes and for recreational use in some regions will allow for much needed research on the pharmacokinetics and pharmocology of medical cannabis. This brief review focuses on the use of cannabis as a medicinal agent in the treatment of pain, epilepsy and neurodegenerative diseases. Despite the paucity of information, attention is paid to the mechanisms by which medical cannabis may act to relieve pain and seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/31332738

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid system involves in the analgesic effect of protocatechuic acid.

 “Protocatechuic acid is an antioxidant which is shown to have analgesic activity in limited studies. However, the mechanisms of action remain unclear.

OBJECTIVES:

It is aimed to investigate the possible contribution of cannabinoid system that supresses the nociceptive process by the activation of CB1 and CB2 receptors in central and peripheral levels of pain pathways, to the analgesic activity of protocatechuic acid.

RESULTS:

It was determined that protocatechuic acid has dose-dependent analgesic effect independently from locomotor activity and is comparable with effects of dipyrone and WIN 55,212-2. Pre-treatment with CB1 receptor antagonist AM251 significantly antagonized the protocatechuic acid-induced analgesia in the tail-immersion and writhing tests, whereas pre-treatment of CB2 receptor antagonist AM630 was found to be effective only in the tail-immersion test.

CONCLUSION:

It is concluded that cannabinoid modulation contributes to the analgesic effect of protocatechuic acid in spinal level rather than peripheral. CB1 receptor stimulation rather than CB2 receptor stimulation mediates the analgesic effect of protocatechuic acid in both levels, especially peripheral. Graphical abstract Protocatechuic acid inhibits pain response via cannabinoidergic system.”

https://www.ncbi.nlm.nih.gov/pubmed/31325037

https://link.springer.com/article/10.1007/s40199-019-00288-x

“Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea.”  https://en.wikipedia.org/wiki/Protocatechuic_acid

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Use of Cannabis to Relieve Pain and Promote Sleep by Customers at an Adult Use Dispensary

Publication Cover

“Cannabis has been used for pain relief and to promote sleep for thousands of years. Over the past several decades in the United States (U.S.), a therapeutic role for cannabis in mainstream medicine has increasingly emerged. Medical cannabis patients consistently report using cannabis as a substitute for prescription medications. Both pain relief and sleep promotion are common reasons for cannabis use, and the majority of respondents who reported using cannabis for these reasons also reported decreasing or stopping their use of prescription or over-the-counter analgesics and sleep aids. While adult-use laws are frequently called “recreational,” implying that cannabis obtained through the adult use system is only for pleasure or experience-seeking, our findings suggest that many customers use cannabis for symptom relief.”

https://www.ncbi.nlm.nih.gov/pubmed/31264536

https://www.tandfonline.com/doi/full/10.1080/02791072.2019.1626953

“Cannabis Is An Effective Treatment Option For Pain Relief And Insomnia, Study Finds” https://www.inquisitr.com/5509672/cannabis-pain-medications-sleep/

“Marijuana Could Be The Alternative Pain Reliever Replacing Opioids”  https://www.medicaldaily.com/marijuana-alternative-pain-reliever-replacing-opioids-437974

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors.

Image result for pain journal

“Central antinociceptive effects of cannabinoids have been well documented.

Our results indicate that cannabinoids produce antihyperalgesia via interaction with a peripheral CB1 receptor.

This hypothesis is supported by the finding that anandamide inhibited capsaicin-evoked release of calcitonin gene-related peptide from isolated hindpaw skin.

Collectively, these results indicate that cannabinoids reduce inflammation via interaction with a peripheral CB1 receptor.”

“The Endocannabinoid System and Pain. Cannabis has been used for more than twelve thousand years and for many different purposes (i.e. fiber, medicinal, recreational). However, the endocannabinoid signaling system has only recently been the focus of medical research and considered a potential therapeutic target. Cannabinoid receptors and their endogenous ligands are present at supraspinal, spinal and peripheral levels. Cannabinoids suppress behavioral responses to noxious stimulation and suppress nociceptive processing through activation of cannabinoid CB1 and CB2 receptor subtypes. These studies suggest that manipulation of peripheral endocannabinoids may be promising strategy for the management of pain.”
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834283/

“The Analgesic Potential of Cannabinoids. Historically and anecdotally cannabinoids have been used as analgesic agents. Moreover, cannabinoids act synergistically with opioids and act as opioid sparing agents, allowing lower doses and fewer side effects from chronic opioid therapy. Thus, rational use of cannabis based medications deserves serious consideration to alleviate the suffering of patients due to severe pain.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728280/
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor 1 (CB1R) expression in rat dental pulp

Oral Science International“Accumulating evidence supports the role of the cannabinoid system in providing an antinociceptive effect in various painful conditions.

This effect is mediated through the Cannabinoid receptor 1 (CB1R) expressed on nociceptive afferent nerve terminals.

To investigate whether this receptor plays a similar role in dental pain, we studied the presence and distribution of CB1R in rat dental pulp.

CB1R was present on nerve fibers in rat dental pulp and possibly plays a role in dental pain mechanisms.

Interestingly, CB1R has recently been demonstrated in human dental pulp.

This strongly suggests that CB1R could be a therapeutic target for dental pain management.”

https://www.sciencedirect.com/science/article/pii/S1348864312000031

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous