Cannabidiol as a potential treatment for psychosis

Image result for therapeutic advances in psychopharmacology“Accumulating evidence implicates the endocannabinoid system in the pathophysiology of psychosis.

If the endocannabinoid system plays a role in psychosis pathophysiology, it raises the interesting possibility that pharmacological compounds that modulate this system may have therapeutic value.

Cannabidiol (CBD), a phytocannabinoid constituent of Cannabis sativa, has been heralded as one such potential treatment.

Cannabidiol (CBD), a non-intoxicating constituent of the cannabis plant, has emerged as a potential novel class of antipsychotic with a unique mechanism of action.

In this review, we set out the prospects of CBD as a potential novel treatment for psychotic disorders.

In sum, CBD currently represents a promising potential novel treatment for patients with psychosis.”

https://journals.sagepub.com/doi/10.1177/2045125319881916

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity.

Biochemical Pharmacology“Medicinal cannabis has remarkable therapeutic potential, but its clinical use is limited by the psychotropic activity of Δ9-tetrahydrocannabinol (Δ9-THC). However, the biological profile of the carboxylated, non-narcotic native precursor of Δ9-THC, the Δ9-THC acid A (Δ9-THCA-A), remains largely unexplored.

Here we present evidence that Δ9-THCA-A is a partial and selective PPARγ modulator, endowed with lower adipogenic activity than the full PPARγ agonist rosiglitazone (RGZ) and enhanced osteoblastogenic effects in hMSC. Docking and in vitro functional assays indicated that Δ9-THCA-A binds to and activates PPARγ by acting at both the canonical and the alternative sites of the ligand-binding domain. Transcriptomic signatures in iWAT from mice treated with Δ9-THCA-A confirmed its mode of action through PPARγ.

Administration of Δ9-THCA-A in a mouse model of HFD-induced obesity significantly reduced fat mass and body weight gain, markedly ameliorating glucose intolerance and insulin resistance, and largely preventing liver steatosis, adipogenesis and macrophage infiltration in fat tissues. Additionally, immunohistochemistry, transcriptomic, and plasma biomarker analyses showed that treatment with Δ9-THCA-A caused browning of iWAT and displayed potent anti-inflammatory actions in HFD mice.

Our data validate the potential of Δ9-THCA-A as a low adipogenic PPARγ agonist, capable of substantially improving the symptoms of obesity-associated metabolic syndrome and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31706843

“Δ9-THCA-A is a partial PPARγ ligand agonist with low adipogenic activity. Δ9-THCA-A enhances osteoblastogenesis in bone marrow derived mesenchymal stem cells. Δ9-THCA-A reduces body weight gain, fat mass, and liver steatosis in HFD-fed mice. Δ9-THCA-A improves glucose tolerance, insulin sensitivity, and insulin profiles in vivo. Δ9-THCA-A induces browning of iWAT and has a potent anti-inflammatory activity.”

https://www.sciencedirect.com/science/article/abs/pii/S0006295219303922?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Whole blood transcriptome analysis in ewes fed with hemp seed supplemented diet.

Image result for scientific reports “The hemp plant (Cannabis sativa L.) has a long tradition of being used for many different purposes such as industry, medicine and nutrition. In particular, because hemp seed (HS) is rich in oil protein and considerable amounts of dietary fiber, vitamins and minerals that are particularly suitable also for animal nutrition.

Different studies have evaluated HS on qualitative and quantitative properties of livestock products but as of today, nobody has investigated the molecular pathway behind HS supplementation in farm animals. Thus, in this study, we will report the first RNA sequencing of the whole-blood transcriptome of ewes fed either with a controlled diet (CTR, n = 5) or with a diet supplemented with 5% of hemp seed (HSG, n = 5).

These results indicate that HS supplementation positively affects the energy production pathway in lactating ewes conferring them also more resistance to adverse climatic conditions such as low temperature. Finally, the higher milk lactose content makes the derived dairy products more profitable.”

https://www.ncbi.nlm.nih.gov/pubmed/31700124

“In conclusion, in this study, we have assessed the transcriptome signature induced by 5% hemp seed supplemented diet in ewes. The findings suggest that pathways related to energy production were the most affected. In addition, we found that this condition could also be potentially beneficial for adaptation to low temperatures. Moreover, we found a higher content of lactose, which makes the derived dairy products more profitable.”

https://www.nature.com/articles/s41598-019-52712-6

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery.

Pharmacological Research“Depression is a widespread psychological disorder that affects up to 20% of the world’s population. Traditional Chinese medicine (TCM), with its unique curative effect in depression treatment, is gaining increasing attention as the discovery of novel antidepressant drug has become the pursuit of pharmaceutical. This article summarizes the work done on the natural products from TCM that have been reported to conceive antidepressant effects in the past two decades, which can be classified according to various mechanisms including increasing synaptic concentrations of monoamines, alleviating the hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, lightening the impairment of neuroplasticity, fighting towards immune and inflammatory dysregulation. The antidepressant active ingredients identified can be generally divided into saponins, flavonoids, alkaloids, polysaccharides and others. Albiflorin, Baicalein, Berberine chloride, beta-Asarone, cannabidiol, Curcumin, Daidzein, Echinocystic acid (EA), Emodin, Ferulic acid, Gastrodin, Genistein, Ginsenoside Rb1, Ginsenoside Rg1, Ginsenoside Rg3, Hederagenin, Hesperidin, Honokiol, Hyperoside, Icariin, Isoliquiritin, Kaempferol, Liquiritin, L-theanine, Magnolol, Paeoniflorin, Piperine, Proanthocyanidin, Puerarin, Quercetin, Resveratrol (trans), Rosmarinic acid, Saikosaponin A, Senegenin, Tetrahydroxystilbene glucoside and Vanillic acid are Specified in this review. Simultaneously, chemical structures of the active ingredients with antidepressant activities are listed and their sources, models, efficacy and mechanisms are described. Chinese compound prescription and extracts that exert antidepressant effects are also introduced, which may serve as a source of inspiration for further development. In the view of present study, the antidepressant effect of certain TCMs are affirmative and encouraging. However, there are a lot of work needs to be done to evaluate the exact therapeutic effects and mechanisms of those active ingredients, specifically, to establish a unified standard for diagnosis and evaluation of curative effect.”

https://www.ncbi.nlm.nih.gov/pubmed/31706012

https://www.sciencedirect.com/science/article/abs/pii/S1043661819322601?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Relieving tension: effects of cannabinoids on vagal afferent sensitivity.

Publication cover image“Endocannabinoids are produced within the gastrointestinal (GI) tract and modulate energy homeostasis and food intake, at least in part, via vagally-dependent actions. The recent paper by Christie et al., [Christie, et al. J Physiol, 2019] demonstrate, for the first time, that cannabinoids exert biphasic effects on the mechanosensitivity of tension-sensitive gastric vagal afferents. At higher concentrations, anandamide increased vagal afferent sensitivity in a CB1 and TRPV1 receptor dependent manner. At lower concentrations, however, anandamide decreased afferent mechanosensitivity; while this was also dependent upon CB1 and TRPV1 receptors, it also appeared dependent upon signaling via the potent orexigenic neurohormone, ghrelin. These results provide further evidence to support the remarkable degree of neuroplasticity within vagal afferent signaling, and suggest that untangling the complex interactions of cannabinoid effects on food intake and energy homeostasis will require careful physiological and pharmacological investigations.”

https://www.ncbi.nlm.nih.gov/pubmed/31707736

https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP279173

“A clear understanding of the mechanisms which mediate these events may provide novel therapeutic targets for the treatment of gastrointestinal disorders due to vago-vagal pathway malfunctions.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318799/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol increases the nociceptive threshold in a preclinical model of Parkinson’s disease.

Neuropharmacology

“Medications that improve pain threshold can be useful in the pharmacotherapy of Parkinson’s disease (PD). Pain is a prevalent PD’s non-motor symptom with a higher prevalence of analgesic drugs prescription for patients. However, specific therapy for PD-related pain are not available.

Since the endocannabinoid system is expressed extensively in different levels of pain pathway, drugs designed to target this system have promising therapeutic potential in the modulation of pain. Thus, we examined the effects of the 6-hydroxydopamine- induced PD on nociceptive responses of mice and the influence of cannabidiol (CBD) on 6-hydroxydopamine-induced nociception.

Further, we investigated the pathway involved in the analgesic effect of the CBD through the co-administration with a fatty acid amide hydrolase (FAAH) inhibitor, increasing the endogenous anandamide levels, and possible targets from anandamide, i.e., the cannabinoid receptors subtype 1 and 2 (CB1 and CB2) and the transient receptor potential vanilloid type 1 (TRPV1).

We report that 6-hydroxydopamine- induced parkinsonism decreases the thermal and mechanical nociceptive threshold, whereas CBD (acute and chronic treatment) reduces this hyperalgesia and allodynia evoked by 6-hydroxydopamine. Moreover, ineffective doses of either FAAH inhibitor or TRPV1 receptor antagonist potentialized the CBD-evoked antinociception while an inverse agonist of the CB1 and CB2 receptor prevented the antinociceptive effect of the CBD.

Altogether, these results indicate that CBD can be a useful drug to prevent the parkinsonism-induced nociceptive threshold reduction. They also suggest that CB1 and TRPV1 receptors are important for CBD-induced analgesia and that CBD could produce these analgesic effects increasing endogenous anandamide levels.”

https://www.ncbi.nlm.nih.gov/pubmed/31706993

“The CBD treatment decreases hyperalgesia and allodynia in experimental parkinsonism.”

https://www.sciencedirect.com/science/article/pii/S0028390819303703?via%3Dihub

Image 1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer.

Image result for cell death and disease“According to recent studies, Cannabidiol (CBD), one of the main components of Cannabis sativa, has anticancer effects in several cancers. However, the exact mechanism of CBD action is not currently understood.

Here, CBD promoted cell death in gastric cancer.

We suggest that CBD induced apoptosis by suppressing X-linked inhibitor apoptosis (XIAP), a member of the IAP protein family. CBD reduced XIAP protein levels while increasing ubiquitination of XIAP. The expression of Smac, a known inhibitor of XIAP, was found to be elevated during CBD treatment. Moreover, CBD treatment increased the interaction between XIAP and Smac by increasing Smac release from mitochondria to the cytosol. CBD has also been shown to affect mitochondrial dysfunction.

Taken together, these results suggest that CBD may have potential as a new therapeutic target in gastric cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31699976

“In conclusion, our study showed that CBD induces apoptotic cell death in gastric cancer cells, which is triggered by ER stress generation and subsequent XIAP inhibition by Smac. Taken together, our results suggest the potential of CBD in novel treatments against gastric cancer.”

 https://www.nature.com/articles/s41419-019-2001-7

figure7

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Myorelaxant Effect of Transdermal Cannabidiol Application in Patients with TMD: A Randomized, Double-Blind Trial.

jcm-logo “The healing properties of cannabidiol (CBD) have been known for centuries.

In this study, we aimed to evaluate the efficiency of the myorelaxant effect of CBD after the transdermal application in patients with myofascial pain.

Results: in Group1, the sEMG masseter activity significantly decreased (11% in the right and 12.6% in the left masseter muscles). In Group2, the sEMG masseter activity was recorded as 0.23% in the right and 3.3% in the left masseter muscles. Pain intensity in VAS scale was significantly decreased in Group1: 70.2% compared to Group2: 9.81% reduction. Patients were asked to apply formulation twice a day for a period of 14 days.

Conclusion: The application of CBD formulation over masseter muscle reduced the activity of masseter muscles and improved the condition of masticatory muscles in patients with myofascial pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31698733

https://www.mdpi.com/2077-0383/8/11/1886

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Potential new therapies against a toxic relationship: neuroinflammation and Parkinson’s disease.

 Image result for ovid journal“Parkinson’s disease (PD) is a neurodegenerative disorder classically associated with motor symptoms, but several nonmotor disturbances appear decades before the clinical diagnosis of the disease.

A variety of hypotheses exist to explain the onset of PD, and neuroinflammation is one of the most investigated processes. In fact, strong evidence suggests that PD begins with an inflammatory process; currently, however, no anti-inflammatory therapy is clinically employed to alleviate the typical motor and the prodromal disturbances such as olfactory loss, cognitive impairments, depression and anxiety, sleep disturbances, and autonomic disorders.

In fact, the classical dopaminergic therapies are not effective in alleviating these symptoms and there is no other specific therapy for these outcomes. Therefore, in this review, we will discuss novel potential pharmacological therapeutic strategies focusing on cannabinoids, caffeine, melatonin, and dietary compounds, which could act as adjuvants to regular PD therapy.

These described chemicals have been extensively investigated as anti-inflammatory agents possibly promoting beneficial effects on nonmotor symptoms of PD. The investigation of the inflammatory process at different stages of PD progression should give us a better view of the therapeutic scenario and could improve our understanding of the mechanisms of this disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31703030

https://insights.ovid.com/crossref?an=00008877-201912000-00008

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Bone Anabolic Response in the Calvaria Following Mild Traumatic Brain Injury is Mediated by the Cannabinoid-1 Receptor.

 Scientific Reports“Brain trauma was clinically associated with increased osteogenesis in the appendicular skeleton. We showed previously in C57BL/6J mice that mild traumatic brain injury (mTBI) transiently induced bone formation in the femur via the cannabinoid-1 (CB1) receptor. Here, we subjected ICR mice to mTBI and examined the bone response in the skull using microCT. We also measured mast cell degranulation (MCD)72 h post-injury. Finally, we measured brain and calvarial endocannabinoids levels post-mTBI. mTBI led to decreased bone porosity on the contralateral (untouched) side. This effect was apparent both in young and mature mice. Administration of rimonabant (CB1 inverse agonist) completely abrogated the effect of mTBI on calvarial porosity and significantly reduced MCD, compared with vehicle-treated controls. We also found that mTBI resulted in elevated levels of anandamide, but not 2-arachidonoylglycerol, in the contralateral calvarial bone, whereas brain levels remained unchanged. In C57BL/6J CB1 knockout mice, mTBI did not reduce porosity but in general the porosity was significantly lower than in WT controls. Our findings suggest that mTBI induces a strain-specific CB1-dependent bone anabolic response in the skull, probably mediated by anandamide, but seemingly unrelated to inflammation. The endocannabinoid system is therefore a plausible target in management of bone response following head trauma.”

https://www.ncbi.nlm.nih.gov/pubmed/31700010

https://www.nature.com/articles/s41598-019-51720-w

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous