Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative.

Cover image

“Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use.

Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects.

These findings show that HUF-101 produced antinociceptive effects at lower doses than CBD, indicating that the addition of fluoride improved its pharmacological profile. Furthermore, some of the antinociceptive effects of CBD and HUF-101 effects seem to involve the activation of CB1 and CB2 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/28720466

http://www.sciencedirect.com/science/article/pii/S0278584617302233

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Is a Potential Therapeutic for the Affective-Motivational Dimension of Incision Pain in Rats.

Image result for frontiers in pharmacology
“Drugs that interfere with the endocannabinoid system are alternatives for the management of clinical pain. Cannabidiol (CBD), a phytocannabinoid found in Cannabis sativa, has been utilized in preclinical and clinical studies for the treatment of pain. Herein, we evaluate the effects of CBD. The study provides evidence that CBD influences different dimensions of the response of rats to a surgical incision, and the results establish the rostral anterior cingulate cortex (rACC) as a brain area from which CBD evokes antinociceptive effects in a manner similar to the systemic administration of CBD. The present study has shown for the first time that CBD injected either systemically or into the rACC induces a long-lasting anti-allodynic effect with a bell-shaped dose-response curve in a rat model of incision pain.” https://www.ncbi.nlm.nih.gov/pubmed/28680401
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Assessing the role of serotonergic receptors in cannabidiol’s anticonvulsant efficacy.

“Cannabidiol (CBD) is a phytocannabinoid that has demonstrated anticonvulsant efficacy in several animal models of seizure. The current experiment validated CBD’s anticonvulsant effect using the acute pentylenetetrazol (PTZ) model.

While this work further confirms the anticonvulsant efficacy of CBD and supports its application in the treatment of human seizure disorders, additional research on CBD’s mechanism of action must be conducted.”

https://www.ncbi.nlm.nih.gov/pubmed/28624721

http://www.epilepsybehavior.com/article/S1525-5050(17)30122-1/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid System in Neurodegenerative Disorders.

Journal of Neurochemistry

“Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid (EC) system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.”

https://www.ncbi.nlm.nih.gov/pubmed/28608560

http://onlinelibrary.wiley.com/doi/10.1111/jnc.14098/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A single dose of cannabidiol reduces blood pressure in healthy volunteers in a randomized crossover study.

Image result for JCI Insight

“Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid used in multiple sclerosis and intractable epilepsies. Preclinical studies show CBD has numerous cardiovascular benefits, including a reduced blood pressure (BP) response to stress. The aim of this study was to investigate if CBD reduces BP in humans.

CONCLUSIONS:

This data shows that acute administration of CBD reduces resting BP and the BP increase to stress in humans, associated with increased HR. These hemodynamic changes should be considered for people taking CBD. Further research is required to establish whether CBD has a role in the treatment of cardiovascular disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28614793

https://insight.jci.org/articles/view/93760

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

GPR3 and GPR6, novel molecular targets for cannabidiol.

Cover image

“GPR3 and GPR6 are members of a family of constitutively active, Gs protein-coupled receptors. Previously, it has been reported that GPR3 is involved in Alzheimer’s disease whereas GPR6 plays potential roles in Parkinson’s disease.

GPR3 and GPR6 are considered orphan receptors because there are no confirmed endogenous agonists for them. However, GPR3 and GPR6 are phylogenetically related to the cannabinoid receptors.

In this study, the activities of endocannabinoids and phytocannabinoids were tested on GPR3 and GPR6 using a β-arrestin2 recruitment assay. Among the variety of cannabinoids tested, cannabidiol (CBD), the major non-psychoactive component of marijuana, significantly reduced β-arrestin2 recruitment to both GPR3 and GPR6. In addition, the inhibitory effects of CBD on β-arrestin2 recruitment were concentration-dependent for both GPR3 and GPR6, with a higher potency for GPR6.

These data show that CBD acts as an inverse agonist at both GPR3 and GPR6 receptors. These results demonstrate for the first time that both GPR3 and GPR6 are novel molecular targets for CBD.

Our discovery that CBD acts as a novel inverse agonist on both GPR3 and GPR6 indicates that some of the potential therapeutic effects of CBD (e.g. treatment of Alzheimer’s disease and Parkinson’s disease) may be mediated through these important receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/28571738

http://www.sciencedirect.com/science/article/pii/S0006291X17310744

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.

Journal Cover

“Phytocannabinoids possess anticancer activity when used alone, and a number have also been shown to combine favourably with each other in vitro in leukaemia cells to generate improved activity.

We have investigated the effect of pairing cannabinoids and assessed their anticancer activity in cell line models. Those most effective were then used with the common anti-leukaemia drugs cytarabine and vincristine, and the effects of this combination therapy on cell death studied in vitro.

Results show a number of cannabinoids could be paired together to generate an effect superior to that achieved if the components were used individually.

For example, in HL60 cells, the IC50 values at 48 h for cannabidiol (CBD) and tetrahydrocannabinol (THC) when used alone were 8 and 13 µM, respectively; however, if used together, it was 4 µM. Median-effect analysis confirmed the benefit of using cannabinoids in pairs, with calculated combination indices being <1 in a number of cases.

The most efficacious cannabinoid-pairs subsequently synergised further when combined with the chemotherapy agents, and were also able to sensitise leukaemia cells to their cytotoxic effects.

The sequence of administration of these drugs was important though; using cannabinoids after chemotherapy resulted in greater induction of apoptosis, whilst this was the opposite when the schedule of administration was reversed.

Our results suggest that when certain cannabinoids are paired together, the resulting product can be combined synergistically with common anti-leukaemia drugs allowing the dose of the cytotoxic agents to be dramatically reduced yet still remain efficacious. Nevertheless, the sequence of drug administration is crucial to the success of these triple combinations and should be considered when planning such treatments.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Single and combined effects of delta9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain.

British Journal of Pharmacology

“It has been suggested that the non-psychoactive phytocannabinoid cannabidiol (CBD) can impact the pharmacological effects of delta-9-tetrahydrocannabinol (THC). We tested the hypothesis that CBD and THC would significantly mitigate mechanical sensitivity in a mouse model of paclitaxel-induced neuropathic pain, and that CBD+THC combinations would produce synergistic effects. We also tested the hypothesis that CBD would attenuate oxaliplatin- and vincristine- induced mechanical sensitivity.

KEY RESULTS:

Both CBD and THC alone attenuated mechanical allodynia in mice treated with paclitaxel. Very low ineffective doses of CBD and THC were synergistic when given in combination. CBD also attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. The low dose combination significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity.

CONCLUSIONS AND IMPLICATIONS:

CBD may be potent and effective at preventing the development of CIPN, and its clinical utility may be enhanced by co-administration of low doses of THC. These treatment strategies would increase the therapeutic window of Cannabis-based pharmacotherapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28548225

http://onlinelibrary.wiley.com/doi/10.1111/bph.13887/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol in Medical Marijuana: Research Vistas and Potential Opportunities.

Cover image

“The high and increasing prevalence of medical marijuana consumption in the general population invites the need for quality evidence regarding its safety and efficacy. Herein, we synthesize extant literature pertaining to the phytocannabinoid cannabidiol (CBD) and its brain effects.

The principle phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) and CBD are the major pharmacologically active cannabinoids. The effect of CBD on brain systems as well as on phenomenological measures (e.g. cognitive function) are distinct and in many cases opposite to that of Δ9-THC.

Cannabidiol is without euphoriant properties, and exerts antipsychotic, anxiolytic, anti-seizure, as well as anti-inflammatory properties.

It is essential to parcellate phytocannabinoids into their constituent moieties as the most abundant cannabinoid have differential effects on physiologic systems in psychopathology measures. Disparate findings and reports related to effects of cannabis consumption reflect differential relative concentration of Δ9-THC and CBD.

Existing literature, notwithstanding its deficiencies, provides empirical support for the hypothesis that CBD may exert beneficial effects on brain effector systems/substrates subserving domain-based phenomenology. Interventional studies with purified CBD are warranted with a call to target-engagement proof-of-principle studies using the research domain criteria (RDoC) framework.” https://www.ncbi.nlm.nih.gov/pubmed/28501518

http://www.sciencedirect.com/science/article/pii/S1043661817303559

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Combined cannabinoid therapy via an oromucosal spray.

“Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects.”  https://www.ncbi.nlm.nih.gov/pubmed/16969427

“Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome.”  https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summaryn_pr?p_JournalId=4&p_RefId=1021517

“Sativex(®) (nabiximols, USAN name) oromucosal spray contains the two main active constituents of Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 molecular ratio, and acts as an endocannabinoid system modulator.”  https://www.ncbi.nlm.nih.gov/pubmed/21449855

“Abuse potential and psychoactive effects of δ-9-tetrahydrocannabinol and cannabidiol oromucosal spray (Sativex), a new cannabinoid medicine. Evidence to date suggests that abuse or dependence on Sativex is likely to occur in only a very small proportion of recipients.” https://www.ncbi.nlm.nih.gov/pubmed/21542664

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous