Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

Journal of Pharmaceutical and Biomedical Analysis

“Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil.

Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein.

This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils.

Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical cannabis Q&A

Logo of canpharmj

  • “1. What is medical cannabis?

The term “medical cannabis” is used to describe products derived from the whole cannabis plant or its extracts containing a variety of active cannabinoids and terpenes, which patients take for medical reasons, after interacting with and obtaining authorization from their health care practitioner.

  • 2. What are the main active ingredients?

The chemical ingredients of cannabis are called cannabinoids. The 2 main therapeutic ones are:

  •  A Tetrahydrocannabinol (THC) is a partial agonist of CB1 and CB2 receptors. It is psychoactive and produces the euphoric effect.
  •  B Cannabidiol (CBD) has a weak affinity for CB1 and CB2 receptors and appears to exert its activity by enhancing the positive effects of the body’s endogenous cannabinoids
 3. Why do patients take it?

Medical cannabis may be used to alleviate symptoms for a variety of conditions. It has most commonly been used in neuropathic pain and other chronic pain conditions. There is limited, but developing, clinical evidence surrounding its safety and efficacy, and it does not currently have an approved Health Canada indication.

  • 4. How do patients take it?

Cannabis can be smoked, vaporized, taken orally, sublingually, topically or rectally. Different routes of administration will result in different pharmacokinetic and pharmacodynamic properties of the drug.

  • 5. Is it possible to develop dependence on medical cannabis?

Yes, abrupt discontinuation after long-term use may result in withdrawal symptoms. Additionally, chronic use may result in psychological dependence.

  • 6. What is the difference between medical and recreational cannabis?

Patients taking cannabis for medical reasons generally use cannabinoids to alleviate symptoms while minimizing intoxication, whereas recreational users may be taking cannabis for euphoric effects. Medical cannabis is authorized by a prescriber who provides a medical document allowing individuals to obtain cannabis from a licensed producer or apply to Health Canada to grow their own, whereas recreational cannabis is currently obtained through illicit means.

  • 7. How can patients access cannabis for medical purposes?
  • 8. Does medical cannabis have a DIN?

Pharmacological cannabinoids such as Sativex (delta-9-tetrahydrocannabinol-cannabidiol) and Cesamet (nabilone) have been approved for specific indications by Health Canada, however, herbal medical cannabis has not gone through Health Canada’s drug review and approval process, nor does it have a Drug Identification Number (DIN) or Natural Product Number (NPN).

  • 9. Is medical cannabis covered through insurance?

Some insurance plans may cover medical cannabis. Check each patient’s individual plan for more details.

  • 10. What role can pharmacists play in medical cannabis?

Even though pharmacists are not dispensing medical cannabis at this time, it is important for them to understand how their patients may use and access medical cannabis in order to provide effective medication management. Pharmacists may provide counselling on areas such as contraindications, drug interactions, management of side effects, alternative therapies, potential addictive behaviour and appropriate use.

  • 11. Where can I find more information about medical cannabis?

You can find more information on Health Canada’s website:” https://www.canada.ca/en/health-canada/services/drugs-health-products/medical-use-marijuana/medical-use-marijuana.html

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661684/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A review of methods for the chemical characterization of cannabis natural products.

Journal of Separation Science

“Cannabis has garnered a great deal of new attention in the past couple of years in the United States due to the increasing instances of its legalization for recreational use and indications for medicinal benefit.

Despite a growing number of laboratories focused on cannabis analysis, the separation science literature pertaining to the determination of cannabis natural products is still in its infancy despite the plant having been utilized by humans for nearly 30 000 years and it being now the most widely used drug world-wide. This is largely attributable to the restrictions associated with cannabis as it is characterized as a Schedule 1 drug in the United States.

Presented here are reviewed analytical methods for the determination of cannabinoids (primarily) and terpenes (secondarily), the primary natural products of interest in cannabis plants. Focus is placed foremost on analyses from plant extracts and the various instrumentation and techniques that are used, but some coverage is also given to analysis of cannabinoid metabolites found in biological fluids. The goal of this work is to provide a collection of relevant separation science information, upon which the field of cannabis analysis can continue to grow.”

https://www.ncbi.nlm.nih.gov/pubmed/28986974

http://onlinelibrary.wiley.com/doi/10.1002/jssc.201701003/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Terpene synthases from Cannabis sativa.

 Image result for PLoS One.

“Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence.

Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties.

Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b.

Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene.

Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.”

https://www.ncbi.nlm.nih.gov/pubmed/28355238

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis for Pain and Headaches: Primer.

Image result for Curr Pain Headache Rep.

“Marijuana has been used both medicinally and recreationally since ancient times and interest in its compounds for pain relief has increased in recent years. The identification of our own intrinsic, endocannabinoid system has laid the foundation for further research.

Synthetic cannabinoids are being developed and synthesized from the marijuana plant such as dronabinol and nabilone. The US Food and Drug Administration approved the use of dronabinol and nabilone for chemotherapy-associated nausea and vomiting and HIV (Human Immunodeficiency Virus) wasting. Nabiximols is a cannabis extract that is approved for the treatment of spasticity and intractable pain in Canada and the UK. Further clinical trials are studying the effect of marijuana extracts for seizure disorders.

Phytocannabinoids have been identified as key compounds involved in analgesia and anti-inflammatory effects.  Other compounds found in cannabis such as flavonoids and terpenes are also being investigated as to their individual or synergistic effects.

This article will review relevant literature regarding medical use of marijuana and cannabinoid pharmaceuticals with an emphasis on pain and headaches.”

https://www.ncbi.nlm.nih.gov/pubmed/28281107

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Benefits of Cannabis Terpenes: Ocimene, Terpinolene, and Guaiol

Leafly

“Terpenes are a group of fragrant essential oils – secreted alongside cannabinoids like THC and CBD – that contribute to the complex aroma of cannabis. They are also generally responsible for many of the distinguishing characteristics of different strains, and this discovery has led to a sharp increase in interest among researchers, producers, and consumers alike.

Though cannabis contains up to 200 different terpenes, there are about 10 primary terpenes and 20 secondary terpenes that occur in significant concentrations. We’d like to introduce you to the potential health benefits of three of those terpenes: ocimene, terpinolene, and guaiol.

Ocimene is an isomeric hydrocarbon found in a wide variety of fruits and plants. It is recognized by its sweet, fragrant, herbaceous, and woodsy aromas, which feature prominently in several perfumes, and which help plants defend themselves in their natural environment. Ocimene occurs naturally in botanicals as diverse as mint, parsley, pepper, basil, mangoes, orchids, kumquats, and of course cannabis.

Ocimene’s potential medical benefits include:

  • Antiviral
  • Antifungal
  • Antiseptic
  • Decongestant
  • Antibacterial

Cannabis strains that can test high in ocimene include Golden Goat, Strawberry Cough,Chernobyl, and Space Queen. At Tilray, strains currently displaying high concentrations of ocimene include OG Kush, Elwyn, and Lemon Sour Diesel.

Terpinolene is another isomeric hydrocarbon, characterized by a fresh, piney, floral, herbal, and occasionally citrusy aroma and flavor. It is found in a variety of other pleasantly fragrant plants including nutmeg, tea tree, conifers, apples, cumin, and lilacs, and is sometimes used in soaps, perfumes, and lotions.

Terpinolene’s potential medical benefits include:

  • Anticancer
  • Antioxidant
  • Sedative
  • Antibacterial
  • Antifungal

Terpinolene is found most commonly in sativa-dominant strains; a few that frequently exhibit high concentrations of this terpene include Jack Herer and its derivatives, such as Pineapple Jack, J1, and Super Jack. At Tilray, strains currently possessing higher than average concentrations of terpinolene include Lemon Sour Diesel, Afghani, and Jean Guy.

Guaiol is not an oil but a sesquiterpenoid alcohol, and is also found in cypress pine and guaiacum. It has been used for centuries as a treatment for diverse ailments ranging from coughs to constipation to arthritis. It is also an effective insect repellent and insecticide.

Guaiol’s potential medical properties include:

  • Antimicrobial
  • Anti-inflammatory

Strains that can test high in guaiol include Chocolope, Liberty Haze, and Blue Kush. At Tilray, strains currently exhibiting relatively high concentrations of guaiol include Barbara Bud, Jean

https://www.leafly.com/news/cannabis-101/benefits-of-cannabis-terpenes-ocimene-terpinolene-and-guaiol

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents.

“Treatment of cancer is a significant challenge in clinical medicine, and its research is a top priority in chemical biology and drug discovery. Consequently, there is an urgent need for identifying innovative chemotypes capable of modulating unexploited drug targets.

The transient receptor potential (TRPs) channels persist scarcely explored as targets, despite intervening in a plethora of pathophysiological events in numerous diseases, including cancer.

Both agonists and antagonists have proven capable of evoking phenotype changes leading to either cell death or reduced cell migration.

Among these, natural products entail biologically pre-validated and privileged architectures for TRP recognition.

Furthermore, several natural products have significantly contributed to our current knowledge on TRP biology. In this Tutorial Review we focus on selected natural products, e.g. capsaicinoids, cannabinoids and terpenes, by highlighting challenges and opportunities in their use as starting points for designing natural product-inspired TRP channel modulators.

Importantly, the de-orphanization of natural products as TRP channel ligands may leverage their exploration as viable strategy for developing anticancer therapies.

Finally, we foresee that TRP channels may be explored for the selective pharmacodelivery of cytotoxic payloads to diseased tissues, providing an innovative platform in chemical biology and molecular medicine.”

http://www.ncbi.nlm.nih.gov/pubmed/26890476

http://www.thctotalhealthcare.com/category/cancer/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis sativa: The Plant of the Thousand and One Molecules.

“Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times.

This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers.

Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively.

In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes.

Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities.

The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data.

Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures.

Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories.

Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.”

http://www.ncbi.nlm.nih.gov/pubmed/26870049

“Known since the ancient times for its medicinal and textile uses, hemp is currently witnessing a revival, because of its rich repertoire of phytochemicals, its fibers and its agricultural features, namely quite good resistance to drought and pests, well-developed root system preventing soil erosion, lower water requirement with respect to other crops, e.g., cotton.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740396/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis.

“The requirements for an acceptable cannabis assay have changed dramatically over the years resulting in a large number of laboratories using a diverse array of analytical methodologies that have not been properly validated. Due to the lack of sufficiently validated methods, we conducted a single- laboratory validation study for the determination of cannabinoids and terpenes in a variety of commonly occurring cultivars. The procedure involves high- throughput homogenization to prepare sample extract, which is then profiled for cannabinoids and terpenes by HPLC-diode array detector and GC-flame ionization detector, respectively. Spike recovery studies for terpenes in the range of 0.03-1.5% were carried out with analytical standards, while recovery studies for Δ9 -tetrahydrocannabinolic acid, cannabidiolic acid, Δ9 -tetrahydrocannabivarinic acid, and cannabigerolic acid and their neutral counterparts in the range of 0.3-35% were carried out using cannabis extracts. In general, accuracy at all levels was within 5%, and RSDs were less than 3%. The interday and intraday repeatabilities of the procedure were evaluated with five different cultivars of varying chemotype, again resulting in acceptable RSDs. As an example of the application of this assay, it was used to illustrate the variability seen in cannabis coming from very advanced indoor cultivation operations.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids as therapeutic agents in cancer: current status and future implications

Img8

“Cannabinoids… active compounds of the Cannabis sativa plant… cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents.

They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models…”  http://www.ncbi.nlm.nih.gov/pubmed/25115386

“Cannabinoids… the active compounds of the Cannabis sativa plant… anti-cancer agents… anti-proliferative… anti-angiogenic… anti-migratory and anti-invasive… The administration of single cannabinoids might produce limited relief compared to the administration of crude extract of plant containing multiple cannabinoids, terpenes and flavanoids.” Full-text: http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B0%5D=2233&path%5B1%5D=3664

http://www.thctotalhealthcare.com/category/cancer/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous