In Vitro Evaluation of the Activity of Terpenes and Cannabidiol against Human Coronavirus E229

life-logo“The activity of a new, terpene-based formulation, code-named NT-VRL-1, against Human Coronavirus (HCoV) strain 229E was evaluated in human lung fibroblasts (MRC-5 cells), with and without the addition of cannabidiol (CBD). The main constituents in the terpene formulation used for the experiment were beta caryophyllene, eucalyptol, and citral. The tested formulation exhibited an antiviral effect when it was pre-incubated with the host cells prior to virus infection. The combination of NT-VRL-1 with CBD potentiated the antiviral effect better than the positive controls pyrazofurin and glycyrrhizin. There was a strong correlation between the quantitative results from a cell-viability assay and the cytopathic effect seen under the microscope after 72 h. To the best of our knowledge, this is the first report of activity of a combination of terpenes and CBD against a coronavirus.”

https://pubmed.ncbi.nlm.nih.gov/33805385/

https://www.mdpi.com/2075-1729/11/4/290

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential

plants-logo“The cannabis plant (Cannabis sativa L.) produces an estimated 545 chemical compounds of different biogenetic classes. In addition to economic value, many of these phytochemicals have medicinal and physiological activity. The plant is most popularly known for its two most-prominent and most-studied secondary metabolites-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Both Δ9-THC and CBD have a wide therapeutic window across many ailments and form part of a class of secondary metabolites called cannabinoids-of which approximately over 104 exist.

This review will focus on non-cannabinoid metabolites of Cannabis sativa that also have therapeutic potential, some of which share medicinal properties similar to those of cannabinoids. The most notable of these non-cannabinoid phytochemicals are flavonoids and terpenes. We will also discuss future directions in cannabis research and development of cannabis-based pharmaceuticals. Caflanone, a flavonoid molecule with selective activity against the human viruses including the coronavirus OC43 (HCov-OC43) that is responsible for COVID-19, and certain cancers, is one of the most promising non-cannabinoid molecules that is being advanced into clinical trials.

As validated by thousands of years of the use of cannabis for medicinal purposes, vast anecdotal evidence abounds on the medicinal benefits of the plant. These benefits are attributed to the many phytochemicals in this plant, including non-cannabinoids. The most promising non-cannabinoids with potential to alleviate global disease burdens are discussed.”

https://pubmed.ncbi.nlm.nih.gov/33672441/

https://www.mdpi.com/2223-7747/10/2/400

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications

nutrients-logo“Diabetes mellitus (DM), a metabolic disorder is one of the most prevalent chronic diseases worldwide across developed as well as developing nations. Hyperglycemia is the core feature of the type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), following insulin deficiency and impaired insulin secretion or sensitivity leads insulin resistance (IR), respectively. Genetic and environmental factors attributed to the pathogenesis of DM and various therapeutic strategies are available for the prevention and treatment of T2DM.

Among the numerous therapeutic approaches, the health effects of dietary/nutraceutical approach due to the presence of bioactive constituents, popularly termed phytochemicals are receiving special interest for pharmacological effects and therapeutic benefits. The phytochemicals classes, in particular sesquiterpenes received attention because of potent antioxidant, anti-inflammatory, and antihyperglycemic effects and health benefits mediating modulation of enzymes, receptors, and signaling pathways deranged in DM and its complications.

One of the terpene compounds, β-caryophyllene (BCP), received enormous attention because of its abundant occurrence, non-psychoactive nature, and dietary availability through consumption of edible plants including spices. BCP exhibit selective full agonism on cannabinoid receptor type 2 (CB2R), an important component of endocannabinoid system, and plays a role in glucose and lipid metabolism and represents the newest drug target for chronic inflammatory diseases.

Many studies demonstrated its antioxidant, anti-inflammatory, organoprotective, and antihyperglycemic properties. In the present review, the plausible therapeutic potential of BCP in diabetes and associated complications has been comprehensively elaborated based on experimental and a few clinical studies available. Further, the pharmacological and molecular mechanisms of BCP in diabetes and its complications have been represented using synoptic tables and schemes.

Given the safe status, abundant natural occurrence, oral bioavailability, dietary use and pleiotropic properties modulating receptors and enzymes, BCP appears as a promising molecule for diabetes and its complications.”

https://pubmed.ncbi.nlm.nih.gov/32998300/

https://www.mdpi.com/2072-6643/12/10/2963

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Topical cannabis-based medicines – A novel paradigm and treatment for non-uremic calciphylaxis leg ulcers: An open label trial

“Non-Uremic Calciphylaxis (NUC) is a rare condition that often manifests as intractable and painful integumentary wounds, afflicting patients with a high burden of co-morbidity.

The Endocannabinoid System (ECS) is a ubiquitous signalling system that is theorised to be dysregulated within wound beds and associated peri-wound tissues.

Preclinical research has shown that the dominant chemical classes derived from the cannabis plant, cannabinoids, terpenes, and flavonoids, interact with the integumentary ECS to promote wound closure and analgesia.

This is a prospective open label cohort study involving two elderly Caucasian females with recalcitrant NUC leg ulcers of greater than 6 months duration.

Topical Cannabis-Based Medicines (TCBM) composed of cannabinoids, terpenes, and flavonoids were applied daily to both the wound bed and peri-wound tissues until complete wound closure was achieved.

Wounds were photographed regularly, and the digital images were subjected to planimetric analysis to objectively quantify the degree of granulation and epithelization. Analgesic utilisation, as a surrogate/proxy for pain scores, was also tracked. The cohort had a mean M3 multimorbidity index score of 3.31. Complete wound closure was achieved in a mean of 76.3 days. Additionally, no analgesics were required after a mean of 63 days.

The treatments were well tolerated with no adverse reactions. The positive results demonstrated in very challenging wounds such as NUC, among highly complex patients, suggest that TCBM may have an even broader role within integumentary and wound management.

This treatment paradigm warrants being trialled in other wound types and classes, and ultimately should be subjected to randomised controlled trials.”

https://pubmed.ncbi.nlm.nih.gov/32875692/

“Topical Cannabis‐Based Medicines, applied to both wound beds and peri‐wound tissues, represent a promising novel, non‐invasive, and safe treatment option for NUC leg ulcers.”

https://onlinelibrary.wiley.com/doi/full/10.1111/iwj.13484

image

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hemp in Veterinary Medicine: From Feed to Drug

 See the source image“Hemp (Cannabis sativa) is an angiosperm plant belonging to the Cannabaceae family. Its cultivation dates back to centuries. It has always been cultivated due to the possibility of exploiting almost all the parts of the plant: paper, fabrics, ropes, bio-compounds with excellent insulating capacity, fuel, biodegradable plastic, antibacterial detergents, and food products, such as flour, oils, seeds, herbal teas, and beer, are indeed obtained from hemp.

Hemp flowers have also always been used for their curative effects, as well as for recreational purposes due to their psychotropic effects. Cannabis contains almost 500 chemical compounds, such as phytocannabinoids, terpenes, flavonoids, amino acids, fatty acids, vitamins, and macro-, and micro-elements, among others.

When utilized as a food source, hemp shows excellent nutritional and health-promoting (nutraceutical) properties, mainly due to the high content in polyunsaturated fatty acids (especially those belonging to the ω-3 series), as well as in phenolic compounds, which seem effective in the prevention of common diseases such as gastrointestinal disorders, neurodegenerative diseases, cancer, and others.

Moreover, hemp oil and other oils (i.e., olive oil and medium-chain triglyceride-MCT-oil) enriched in CBD, as well as extracts from hemp dried flowers (Cannabis extracts), are authorized in some countries for therapeutic purposes as a second-choice approach (when conventional therapies have failed) for a certain number of clinical conditions such as pain and inflammation, epilepsy, anxiety disorders, nausea, emesis, and anorexia, among others.

The present review will synthetize the beneficial properties of hemp and hemp derivatives in animal nutrition and therapeutics.”

https://pubmed.ncbi.nlm.nih.gov/32850997/

C. sativa has been an important source of food in the Old World, as hempseeds and seed meal are excellent sources of dietary oil, fiber, and protein. Many of the constituents of C. sativa can be classified as either nutrients, nutraceuticals, or pharmaceutical ingredients.”

https://www.frontiersin.org/articles/10.3389/fvets.2020.00387/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis

cancers-logo“In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.”

https://pubmed.ncbi.nlm.nih.gov/32708138/

https://www.mdpi.com/2072-6694/12/7/1985

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Naturally Occurring Cannabinoids and their Role in Modulation of Cardiovascular Health

 Publication Cover“In recent years, the role of the endocannabinoid system (ECS) in various cardiovascular conditions has been a subject of great interest. The ECS is composed of cannabinoid receptors, their endogenous ligands, also known as endocannabinoids, and enzymes responsible for the synthesis and degradation of endocannabinoids.

Several lines of evidence suggest that the ECS plays a complex role in cardiac and vascular systems; however, under normal physiological conditions the functions of the ECS are limited. Overactivation of components of the ECS has been associated with various cardiovascular conditions.

Intriguingly, activation of the ECS may also reflect a cardioprotective compensatory mechanism. With this knowledge, a range of naturally occurring and synthetic cannabinoid receptor agonists and antagonists, as well as inhibitors of endocannabinoid metabolic enzymes have emerged as promising approaches for the treatment or management of cardiovascular health.

This review will first focus on the known role of the ECS in regulating the cardiovascular system. Secondly, we discuss emerging data highlighting the therapeutic potential of naturally occurring non-psychoactive ECS modulators within the cardiovascular system, including phytocannabinoids, terpenes, and the endocannabinoid-like molecule palmitoylethanolamide.”

https://pubmed.ncbi.nlm.nih.gov/32677481/

“Several approaches discussed here, including administration of eCB-related molecules such as PEA, or supplementing with various phytocannabinoids can be promising candidates for the management of cardiovascular risk factors and CVD.”

https://www.tandfonline.com/doi/full/10.1080/19390211.2020.1790708

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Phytomolecule ‘Entourage’: From Domestication to Medical Use.

 

Trends in Plant Science: Special issue: Specifi...“Cannabis has been used as a medicine for millennia.

Crude extracts of cannabis inflorescence contain numerous phytomolecules, including phytocannabinoids, terpenes, and flavonoids. Combinations of phytomolecules have been recently established as superior to the use of single molecules in medical treatment owing to the ‘entourage effect’.

Two types of entourage effects are defined: ‘intra-entourage’, resulting from interactions among phytocannabinoids or terpenes, and ‘inter-entourage’, attributed to interactions between phytocannabinoids and terpenes. It is suggested that the phytomolecule assemblages found in cannabis chemovars today derive from selective breeding during ancient cultivation.

We propose that the current cannabis chemotaxonomy should be redefined according to chemical content and medicinal activity. In parallel, combinations of phytomolecules that exhibit entourage activity should be explored further for future drug development.”

https://www.ncbi.nlm.nih.gov/pubmed/32417167

“Cannabis has been used for millennia by humanity for social, ritual, and medical purposes. Humans bred and selected for cannabis strains based on their needs.”

https://www.cell.com/trends/plant-science/pdf/S1360-1385(20)30122-9.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138520301229%3Fshowall%3Dtrue

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Innovative methods for the preparation of medical Cannabis oils with a high content of both cannabinoids and terpenes.

Journal of Pharmaceutical and Biomedical Analysis“Cannabis-based medications are being increasingly used for the treatment of different clinical conditions.

Among all galenic formulations, olive oil extracts from medical Cannabis are the most prescribed ones for their easy preparation and usage. A great variety of methods have been described so far for the extraction of medical Cannabis oils to reach a high yield of Δ9-tetrahydrocannabinol (Δ9-THC), but poor attention has been paid to the preservation of the terpene fraction from the plant, which may contribute to the overall bioactivity of the extracts.

In this context, the present study was aimed at the chemical characterization of different medical Cannabis oils prepared by following both innovative and existing extraction protocols, with particular attention to cannabinoids and terpenes, in order to set up a suitable method to obtain an extract rich in these chemical classes. In particular, six different extraction procedures were followed, based on different techniques, of which all but one included a decarboxylation of the plant material.

The profile of cannabinoids was studied in detail by means of HPLC-ESI-MS/MS, while terpenes were characterized by means both GC-MS and GC-FID techniques coupled with solid-phase microextraction operated in the head-space mode (HS-SPME). An innovative method that is based on the extraction of the oil by dynamic maceration at room temperature from plant inflorescences, which were partially decarboxylated in a closed system at a moderate temperature and partially pre-extracted with ethanol, produced similar yields of bioactive compounds as that obtained by using a microwave-assisted distillation of the essential oil from the plant material, in combination with a maceration extraction of the oil from the residue.

Both these new methods provided a higher efficiency over already existing extraction procedures of medical Cannabis oils and they can be applied to obtain a product with a high therapeutic value.”

https://www.ncbi.nlm.nih.gov/pubmed/32334134

“New methods were developed for the extraction of medical Cannabis oils.”

https://www.sciencedirect.com/science/article/abs/pii/S0731708520303897?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Simultaneous determination of terpenes and cannabidiol in hemp (Cannabis sativa L.) by fast Gas Chromatography with Flame Ionization Detection.

Journal of Separation Science“Hemp (Cannabis sativa L.) has become widely used in several sectors due to the presence of various bioactive compounds such as terpenes and cannabidiol. In general, terpenes and cannabidiol content is determined separately which is time-consuming. Thus, a fast Gas Chromatography with Flame Ionization Detection method was validated for simultaneous determination of both terpenes and cannabidiol in hemp. The method enabled a rapid detection of 29 different terpenes and cannabidiol within a total analysis time of 16 min, with satisfactory sensitivity (LOD = 0.03 – 0.27 μg/mL, LOQ = 0.10 – 0.89 μg/mL). The interday and intraday precision (RSD) was <7.82 % and <3.59 %, respectively. Recoveries at two spiked concentration levels (low, 3.15 μg/mL; high, 20.0 μg/mL) were determined on both apical leaves (78.55 – 101.52 %) and inflorescences (77.52 – 107.10 %). The reproducibility (RSD) was <5.94 % and <5.51 % in apical leaves and inflorescences, respectively. The proposed and validated method is highly sensitive, robust, fast, and accurate for determination of the main terpenes and cannabidiol in hemp and could be routinely used for quality control.”

https://www.ncbi.nlm.nih.gov/pubmed/32329135

https://onlinelibrary.wiley.com/doi/abs/10.1002/jssc.201900822

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous