The Bee Community of Cannabis sativa and Corresponding Effects of Landscape Composition.

Image result for environmental entomology“Industrial hemp, Cannabis sativa (Cannabaceae), is a newly introduced and rapidly expanding crop in the American agricultural landscape. As an exclusively wind-pollinated crop, hemp lacks nectar but produces an abundance of pollen during a period of floral dearth in agricultural landscapes. These pollen resources are attractive to a range of bee species but the diversity of floral visitors and their use of hemp across a range of agricultural contexts remains unclear. We made repeated sweep net collections of bees visiting hemp flowers on farms in New York, which varied in both landscape context and phenotypic traits of hemp varieties. We identified all bee visitors to the species level and found that hemp supported 16 different bee species. Landscape simplification negatively impacted the abundance of bees visiting hemp flowers but did not affect the species richness of the community. Plant height, on the other hand, was strongly correlated with bee species richness and abundance for hemp plots with taller varieties attracting a broader diversity of bee species. Because of its temporally unique flowering phenology, hemp has the potential to provide a critical nutritional resource to a diverse community of bees during a period of floral scarcity and thereby may help to sustain agroecosystem-wide pollination services for other crops in the landscape. As cultivation of hemp increases, growers, land managers, and policy makers should consider its value in supporting bee communities and take its attractiveness to bees into account when developing pest management strategies.”

https://www.ncbi.nlm.nih.gov/pubmed/31789341

https://academic.oup.com/ee/advance-article/doi/10.1093/ee/nvz141/5634339

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Systematics at the Levels of Family, Genus, and Species.

Cannabis and Cannabinoid Research cover image

“New concepts are reviewed in Cannabis systematics, including phylogenetics and nomenclature. The family Cannabaceae now includes CannabisHumulus, and eight genera formerly in the Celtidaceae. Grouping CannabisHumulus, and Celtis actually goes back 250 years. Print fossil of the extinct genus Dorofeevia (=Humularia) reveals that Cannabis lost a sibling perhaps 20 million years ago (mya). Cannabis print fossils are rare (n=3 worldwide), making it difficult to determine when and where she evolved. A molecular clock analysis with chloroplast DNA (cpDNA) suggests Cannabis and Humulus diverged 27.8 mya. Microfossil (fossil pollen) data point to a center of origin in the northeastern Tibetan Plateau. Fossil pollen indicates that Cannabis dispersed to Europe by 1.8-1.2 mya. Mapping pollen distribution over time suggests that European Cannabis went through repeated genetic bottlenecks, when the population shrank during range contractions. Genetic drift in this population likely initiated allopatric differences between European Cannabis sativa (cannabidiol [CBD]>Δ9-tetrahydrocannabinol [THC]) and Asian Cannabis indica (THC>CBD). DNA barcode analysis supports the separation of these taxa at a subspecies level, and recognizing the formal nomenclature of C. sativa subsp. sativa and C. sativa subsp. indica. Herbarium specimens reveal that field botanists during the 18th-20th centuries applied these names to their collections rather capriciously. This may have skewed taxonomic determinations by Vavilov and Schultes, ultimately giving rise to today’s vernacular taxonomy of “Sativa” and “Indica,” which totally misaligns with formal C. sativa and C. indica. Ubiquitous interbreeding and hybridization of “Sativa” and “Indica” has rendered their distinctions almost meaningless.”

https://www.ncbi.nlm.nih.gov/pubmed/30426073

https://www.liebertpub.com/doi/10.1089/can.2018.0039

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp).

 molecules-logo

“Cannabis sativa L. is a dioecious plant belonging to the Cannabaceae family. The main phytochemicals that are found in this plant are represented by cannabinoids, flavones, and terpenes. Some biological activities of cannabinoids are known to be enhanced by the presence of terpenes and flavonoids in the extracts, due to a synergistic action.

In the light of all the above, the present study was aimed at the multi-component analysis of the bioactive compounds present in fibre-type C. sativa (hemp) inflorescences of different varieties by means of innovative HPLC and GC methods. In particular, the profiling of non-psychoactive cannabinoids was carried out by means of HPLC-UV/DAD, ESI-MS, and MS². The content of prenylated flavones in hemp extracts, including cannflavins A and B, was also evaluated by HPLC.

The study on Cannabis volatile compounds was performed by developing a new method based on headspace solid-phase microextraction (HS-SPME) coupled with GC-MS and GC-FID. Cannabidiolic acid (CBDA) and cannabidiol(CBD) were found to be the most abundant cannabinoids in the hemp samples analysed, while β-myrcene and β-caryophyllene were the major terpenes. As regards flavonoids, cannflavin A was observed to be the main compound in almost all the samples.

The methods developed in this work are suitable for the comprehensive chemical analysis of both hemp plant material and related pharmaceutical or nutraceutical products in order to ensure their quality, efficacy, and safety.”

https://www.ncbi.nlm.nih.gov/pubmed/30322208

https://www.mdpi.com/1420-3049/23/10/2639

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus.

European Journal of Medicinal Chemistry

“Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes – both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence.

Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail.

The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes’ medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others.

Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Extraction Method and Analysis of Cannabinoids in Cannabis Olive Oil Preparations.

“Recently, an increasing number of pharmacists had to supply medicinal products based on Cannabis sativa L. (Cannabaceae), prescribed by physicians to individual patients. 

Cannabis olive oil preparation is the first choice as a concentrated extract of cannabinoids, even though standardized operative conditions for obtaining it are still not available.

In this work, the impact of temperature and extraction time on the concentration of active principles was studied to harmonize the different compounding methods, optimize the extraction process, and reduce the variability among preparations.

https://www.ncbi.nlm.nih.gov/pubmed/29202510

https://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-123074

“Therapeutic Use of Δ9-THC and Cannabidiol: Evaluation of a New Extraction Procedure for the Preparation of Cannabis-based Olive Oil.”  https://www.ncbi.nlm.nih.gov/pubmed/29189144

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytochemical Aspects and Therapeutic Perspective of Cannabinoids in Cancer Treatment

Cannabis sativa L. – dried pistillate inflorescences and trichomes on their surface. (a) dried pistillate inflorescences (50% of the size); (b) non‐cystolithic trichome; (c) cystolithic trichome; (d) capitate‐sessile trichome; (e) simple bulbous trichome; (f) capitate‐stalked trichome (400×).

“Cannabis sativa L. (Cannabaceae) is one of the first plants cultivated by man and one of the oldest plant sources of fibre, food and remedies.

Cannabinoids comprise the plant‐derived compounds and their synthetic derivatives as well as endogenously produced lipophilic mediators. Phytocannabinoids are terpenophenolic secondary metabolites predominantly produced in CannabissativaL.

The principal active constituent is delta‐9‐tetrahydrocannabinol (THC), which binds to endocannabinoid receptors to exert its pharmacological activity, including psychoactive effect. The other important molecule of current interest is non‐psychotropic cannabidiol (CBD).

Since 1970s, phytocannabinoids have been known for their palliative effects on some cancer‐associated symptoms such as nausea and vomiting reduction, appetite stimulation and pain relief. More recently, these molecules have gained special attention for their role in cancer cell proliferation and death.

A large body of evidence suggests that cannabinoids affect multiple signalling pathways involved in the development of cancer, displaying an anti‐proliferative, proapoptotic, anti‐angiogenic and anti‐metastatic activity on a wide range of cell lines and animal models of cancer.”

https://www.intechopen.com/books/natural-products-and-cancer-drug-discovery/phytochemical-aspects-and-therapeutic-perspective-of-cannabinoids-in-cancer-treatment

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Name of Cannabis: A Short Guide for Nonbotanists.

Mary Ann Liebert, Inc. publishers

“The genus Cannabis (Family Cannabaceae) is probably indigenous to wet habitats of Asiatic continent. The long coexistence between mankind and Cannabis led to an early domestication of the plant, which soon showed an amazing spectrum of possible utilizations, as a source of textile fibers, as well as narcotic and psychoactive compounds. Nowadays, the specie(s) belonging to the genus Cannabis are represented by myriads of cultivated varieties, often with unstable taxonomic foundations. The nomenclature of Cannabis has been the object of numerous nomenclatural treatments. Linnaeus in Species Plantarum (1753) described a single species of hemp, Cannabis sativa, whereas Lamarck (1785) proposed two species of CannabisC. sativa, the species largely cultivated in Western Continent, and Cannabis indica, a wild species growing in India and neighboring countries. The dilemma about the existence of the species C. indica considered distinct from C. sativa continues up to present days. Due to their prevalent economic interest, the nomenclatural treatment is particularly important as far as it concerns the cultivated varieties of Cannabis. In this context, we propose to avoid the distinction between sativa and indica, suggesting a bimodal approach: when a cultivar has been correctly established. It could be advisable to apply a nomenclature system based on the International Code of Nomenclature for Cultivated Plants (ICNCP): it is not necessary to use the species epithets, sativa or indica, and a combination of the genus name and a cultivar epithet in any language and bounded by single quotation marks define an exclusive name for each Cannabis cultivar. In contrast, Cannabis varieties named with vernacular names by medical patients and recreational users, and lacking an adequate description as required by ICNCP, should be named as Cannabis strain, followed by their popularized name and without single quotation marks, having in mind that their names have no taxonomical validity.”

https://www.ncbi.nlm.nih.gov/pubmed/28861494

http://online.liebertpub.com/doi/10.1089/can.2016.0027

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Leaner and greener analysis of cannabinoids

Analytical and Bioanalytical Chemistry

“There is an explosion in the number of labs analyzing cannabinoids in marijuana (Cannabis sativa L., Cannabaceae) but existing methods are inefficient, require expert analysts, and use large volumes of potentially environmentally damaging solvents. The objective of this work was to develop and validate an accurate method for analyzing cannabinoids in cannabis raw materials and finished products that is more efficient and uses fewer toxic solvents.

An HPLC-DAD method was developed for eight cannabinoids in cannabis flowers and oils using a statistically guided optimization plan based on the principles of green chemistry. A single-laboratory validation determined the linearity, selectivity, accuracy, repeatability, intermediate precision, limit of detection, and limit of quantitation of the method. Amounts of individual cannabinoids above the limit of quantitation in the flowers ranged from 0.02 to 14.9% w/w, with repeatability ranging from 0.78 to 10.08% relative standard deviation. The intermediate precision determined using HorRat ratios ranged from 0.3 to 2.0. The LOQs for individual cannabinoids in flowers ranged from 0.02 to 0.17% w/w.

We developed an optimized HPLC-DAD method with reduced extraction time and greener solvents for adoption into cannabis testing laboratories. Sample turnaround is significantly reduced, while method validation confirmed that the method produces repeatable, accurate results. The sample preparation eliminates the use of chloroform, which has been routinely used in cannabinoid analysis, reducing material costs, use of greener solvents, and improved laboratory safety for personnel. This method can be used in a variety of settings from clinical studies, research, quality control, and regulatory evaluation of this growing industry.

This is a significant improvement over previous methods and is suitable for a wide range of applications including regulatory compliance, clinical studies, direct patient medical services, and commercial suppliers.”

https://link.springer.com/article/10.1007/s00216-017-0256-3

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

In Vitro Propagation of Cannabis sativa L. and Evaluation of Regenerated Plants for Genetic Fidelity and Cannabinoids Content for Quality Assurance.

“Cannabis sativa L. (Marijuana; Cannabaceae), one of the oldest medicinal plants in the world, has been used throughout history for fiber, food, as well as for its psychoactive properties.

The dioecious and allogamous nature of C. sativa is the major constraint to maintain the consistency in chemical profile and overall efficacy if grown from seed. Therefore, the present optimized in vitro propagation protocol of the selected elite germplasm via direct organogenesis and quality assurance protocols using genetic and chemical profiling provide an ideal pathway for ensuring the efficacy of micropropagated Cannabis sativa germplasm.

A high frequency shoot organogenesis of C. sativa was obtained from nodal segments in 0.5 μM thidiazuron medium and 95 % in vitro rhizogenesis is obtained on half-strength MS medium supplemented with 500 mg/L activated charcoal and 2.5 μM indole-3-butyric acid. Inter Simple Sequence Repeats (ISSR) and Gas Chromatography-Flame Ionization Detection (GC-FID) are successfully used to monitor the genetic stability in micropropagated plants up to 30 passages in culture and hardened in soil for 8 months.”

http://www.ncbi.nlm.nih.gov/pubmed/27108324

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The cardiac and haemostatic effects of dietary hempseed

Logo of nutrmeta

“Cannabis sativa L. is an annual plant in the Cannabaceae family. It has been an important source of food, fiber, medicine and psychoactive/religious drug since prehistoric times. Hemp has a botanical relationship to drug/medicinal varieties of Cannabis. However, hempseed no longer contains psychotropic action and instead may provide significant health benefits. Hempseed has an excellent content of omega-3 and omega-6 fatty acids. These compounds have beneficial effects on our cardiovascular health.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868018/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous