Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

Neuroscience

“The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System.

Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders.

Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes.

WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes.

These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes.”

https://www.ncbi.nlm.nih.gov/pubmed/25446347

https://www.sciencedirect.com/science/article/abs/pii/S0306452214009737?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects of Cannabidiol on Diabetes Outcomes and Chronic Cerebral Hypoperfusion Comorbidities in Middle-Aged Rats.

“Diabetes and aging are risk factors for cognitive impairments after chronic cerebral hypoperfusion (CCH).

Cannabidiol (CBD) is a phytocannabinoid present in the Cannabis sativa plant. It has beneficial effects on both cerebral ischemic diseases and diabetes.

We have recently reported that diabetes interacted synergistically with aging to increase neuroinflammation and memory deficits in rats subjected to CCH.

The present study investigated whether CBD would alleviate cognitive decline and affect markers of inflammation and neuroplasticity in the hippocampus in middle-aged diabetic rats submitted to CCH.

These results suggest that the neuroprotective effects of CBD in middle-aged diabetic rats subjected to CCH are related to a reduction in neuroinflammation. However, they seemed to occur independently of hippocampal neuroplasticity changes.”

https://www.ncbi.nlm.nih.gov/pubmed/30430393

https://link.springer.com/article/10.1007%2Fs12640-018-9972-5

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The protective effects of Δ9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia.

Journal of Pharmacy and Pharmacology banner

“A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications.

 

The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.

 

According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”

 

https://www.ncbi.nlm.nih.gov/pubmed/30427077

https://onlinelibrary.wiley.com/doi/abs/10.1111/jphp.13042

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Systematics at the Levels of Family, Genus, and Species.

Cannabis and Cannabinoid Research cover image

“New concepts are reviewed in Cannabis systematics, including phylogenetics and nomenclature. The family Cannabaceae now includes CannabisHumulus, and eight genera formerly in the Celtidaceae. Grouping CannabisHumulus, and Celtis actually goes back 250 years. Print fossil of the extinct genus Dorofeevia (=Humularia) reveals that Cannabis lost a sibling perhaps 20 million years ago (mya). Cannabis print fossils are rare (n=3 worldwide), making it difficult to determine when and where she evolved. A molecular clock analysis with chloroplast DNA (cpDNA) suggests Cannabis and Humulus diverged 27.8 mya. Microfossil (fossil pollen) data point to a center of origin in the northeastern Tibetan Plateau. Fossil pollen indicates that Cannabis dispersed to Europe by 1.8-1.2 mya. Mapping pollen distribution over time suggests that European Cannabis went through repeated genetic bottlenecks, when the population shrank during range contractions. Genetic drift in this population likely initiated allopatric differences between European Cannabis sativa (cannabidiol [CBD]>Δ9-tetrahydrocannabinol [THC]) and Asian Cannabis indica (THC>CBD). DNA barcode analysis supports the separation of these taxa at a subspecies level, and recognizing the formal nomenclature of C. sativa subsp. sativa and C. sativa subsp. indica. Herbarium specimens reveal that field botanists during the 18th-20th centuries applied these names to their collections rather capriciously. This may have skewed taxonomic determinations by Vavilov and Schultes, ultimately giving rise to today’s vernacular taxonomy of “Sativa” and “Indica,” which totally misaligns with formal C. sativa and C. indica. Ubiquitous interbreeding and hybridization of “Sativa” and “Indica” has rendered their distinctions almost meaningless.”

https://www.ncbi.nlm.nih.gov/pubmed/30426073

https://www.liebertpub.com/doi/10.1089/can.2018.0039

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Autism Spectrum Disorders: Potential Neuro-Psychopharmacotherapeutic Plant-Based Drugs.

ASSAY and Drug Development Technologies cover image

“Over the years, scientific researches have validated the healing benefits of many psychopharmacotherapeutic plant-based drugs to ameliorate psychiatric disorders. In contrast, the use of chemical procedures to isolate and purify specific compounds from plants that have been used to treat autism spectrum disorders (ASDs) and its clinical features may contribute to improve the quality of life of many patients. Also, herbal pharmacological treatments could improve the core symptoms of autism with fewer side effects. This review will focus on the uses and actions of phytopharmaceuticals in the behavioral conditions of ASDs. A large number of natural compound-based plant drugs have been tested in murine models of autism and in clinical trials with remarkable success in reversing the core and associated behaviors with autism such as flavonoids, cannabinoids, curcuminoids, piperine, resveratrol, and bacosides. This plant-based drug alternative is safer given that many psychiatric disorders and neurodegenerative pathologies do not often respond well to currently prescribed medications or have significant side effects. However, it is noteworthy to consider the need for large clinical trials to determine safety and efficacy. Many results are based on case reports or small size samples, and often the studies are open label. Standardization of procedures (i.e., purity and concentrations) and quality controls are strictly required to ensure the absence of side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30427697

https://www.liebertpub.com/doi/10.1089/adt.2018.848

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Oncology Clinicians and the Minnesota Medical Cannabis Program: A Survey on Medical Cannabis Practice Patterns, Barriers to Enrollment, and Educational Needs.

Cannabis and Cannabinoid Research cover image

“Medical cannabis has been available in the State of Minnesota since July 2015 through the Minnesota Medical Cannabis Program (MMCP).

Objectives: Our study aimed to delineate oncology providers’ views on medical cannabis, identify barriers to patient enrollment, and assess clinicians’ interest in a clinical trial of medical cannabis in patients with stage IV cancer.

Results: Of the 529 eligible survey participants, 153 (29%) responded to our survey; 68 respondents were registered with the MMCP. Most identified themselves as a medical oncologist or medical oncology nurse practitioner/physician assistant (n=125, 82%), and most practiced in a community setting (n=102, 67%). Overall, 65% of respondents supported the use of medical cannabis. Perceived cost and inadequate research were the highest barriers to MMCP patient enrollment. The lowest barriers included lack of health group support for allowing certification of patients and risk of social stigma. Of all respondents, 36% lacked confidence in discussing the risks and benefits of medical cannabis, and 85% wanted more education.

Conclusions: Although support for cannabis use in the cancer setting is growing, significant barriers remain. This study illustrates a clear need to give clinicians both data and education to guide their discussions about the benefits, risks, and cost considerations of using medical cannabis for cancer-related symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/30426072

https://www.liebertpub.com/doi/10.1089/can.2018.0029

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Association of Cannabinoid Administration With Experimental Pain in Healthy Adults: A Systematic Review and Meta-analysis.

Image result for jama psychiatry “Cannabinoid drugs are widely used as analgesics, but experimental pain studies have produced mixed findings. The analgesic properties of cannabinoids remain unclear.

OBJECTIVE:

To conduct a systematic review and meta-analysis of the association between cannabinoid drug administration and experimental pain outcomes in studies of healthy adults.

CONCLUSIONS AND RELEVANCE:

Cannabinoid drugs may prevent the onset of pain by producing small increases in pain thresholds but may not reduce the intensity of experimental pain already being experienced; instead, cannabinoids may make experimental pain feel less unpleasant and more tolerable, suggesting an influence on affective processes. Cannabis-induced improvements in pain-related negative affect may underlie the widely held belief that cannabis relieves pain.”

https://www.ncbi.nlm.nih.gov/pubmed/30422266

https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2701671

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System and Oligodendrocytes in Health and Disease.

 Image result for frontiers in neuroscience“Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.”

https://www.ncbi.nlm.nih.gov/pubmed/30416422

https://www.frontiersin.org/articles/10.3389/fnins.2018.00733/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis, cannabinoids and the endocannabinoid system – is there therapeutic potential for inflammatory bowel disease?

Image result for jcc journal

“Cannabis sativa and its extracts have been used for centuries both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date. The largest study to date being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effect of adding medical cannabis to analgesic treatment in patients with low back pain related to fibromyalgia: an observational cross-over single centre study.

Image result for Clin Exp Rheumatol.

“Low back pain (LBP) occurs in many patients with fibromyalgia (FM). The current study aimed to assess the possible pain and function amelioration associated with medical cannabis therapy (MCT) in this setting.

METHODS:

31 patients were involved in an observational cross-over study. The patients were screened, treated with 3 months of standardised analgesic therapy (SAT): 5 mg of oxycodone hydrochloride equivalent to 4.5 mg oxycodone and 2.5 mg naloxone hydrochloride twice a day and duloxetine 30 mg once a day. Following 3 months of this therapy, the patients could opt for MCT and were treated for a minimum of 6 months. Patient reported outcomes (PRO’s) included: FIQR, VAS, ODI and SF-12 and lumbar range of motion (ROM) was recorded using the modified Schober test.

RESULTS:

While SAT led to minor improvement as compared with baseline status, the addition of MCT allowed a significantly higher improvement in all PRO’s at 3 months after initiation of MCT and the improvement was maintained at 6 months. ROM improved after 3 months of MCT and continued to improve at 6 months.

CONCLUSIONS:

This observational cross-over study demonstrates an advantage of MCT in FM patients with LBP as compared with SAT. Further randomised clinical trial studies should assess whether these results can be generalised to the FM population at large.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous