Cannabimimetic plants: are they new cannabinoidergic modulators?

“Phytochemicals and secondary metabolites able to interact with the endocannabinoid system (Cannabimimetics) have been recently described in a broad range of plants and fruits. These findings can open new alternative avenues to explore for the development of novel therapeutic compounds. The cannabinoids regulate many physiological and pathological functions in both animals and plants. Cannabis sativa is the main plant that produces phytocannabinoids inside resins capable to defend the plant from the aggression of parasites and herbivores. Animals produce anandamide and 2-arachidonoyl glycerol, which thanks to binding with main receptors such as type-1 cannabinoid receptor (CB1R) and the type-2 cannabinoid receptor (CB2R) are involved in inflammation processes and several brain functions. Endogenous cannabinoids, enzymes for synthesis and degradation of cannabinoids, and CB1R and CB2R constitute the endocannabinoid system (ECS). Other plants can produce cannabinoid-like molecules such as perrottetinene extracted from Radula perrottetii, or anandamide and 2-arachidonoyl glycerol extracted from some bryophytes. Moreover, several other secondary metabolites can also interact with the ECS of animals and take the name of cannabimimetics. These phytoextracts not derived from Cannabis sativa can act as receptor agonists or antagonist, or enzyme inhibitors of ECS and can be involved in the inflammation, oxidative stress, cancer, and neuroprotection. Finally, given the evolutionary heterogeneity of the cannabimimetic plants, some authors speculated on the fascinating thesis of the evolutionary convergence between plants and animals regarding biological functions of ECS. The review aims to provide a critical and complete assessment of the botanical, chemical and therapeutic aspects of cannabimimetic plants to evaluate their spread in the world and medicinal potentiality.”

https://www.ncbi.nlm.nih.gov/pubmed/30877436

https://link.springer.com/article/10.1007%2Fs00425-019-03138-x

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Crystal Structure of the Human Cannabinoid Receptor CB2

Figure thumbnail fx1

“The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257’s unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.”
“Study reveals the structure of the 2nd human cannabinoid receptor”   HTTPS://MIPT.RU/ENGLISH/NEWS/STUDY_REVEALS_THE_STRUCTURE_OF_THE_2ND_HUMAN_CANNABINOID_RECEPTOR
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

On the influence of cannabinoids on cell morphology and motility of glioblastoma cells.

 Image result for plos one

“The mechanisms behind the anti-tumoral effects of cannabinoids by impacting the migratory activity of tumor cells are only partially understood. Previous studies demonstrated that cannabinoids altered the organization of the actin cytoskeleton in various cell types.

As actin is one of the main contributors to cell motility and is postulated to be linked to tumor invasion, we tested the following hypothesizes: 1) Can cannabinoids alter cell motility in a cannabinoid receptor dependent manner? 2) Are these alterations associated with reorganizations in the actin cytoskeleton? 3) If so, what are the underlying molecular mechanisms?

Three different glioblastoma cell lines were treated with specific cannabinoid receptor 1 and 2 agonists and antagonists. Afterwards, we measured changes in cell motility using live cell imaging and alterations of the actin structure in fixed cells. Additionally, the protein amount of phosphorylated p44/42 mitogen-activated protein kinase (MAPK), focal adhesion kinases (FAK) and phosphorylated FAK (pFAK) over time were measured.

Cannabinoids induced changes in cell motility, morphology and actin organization in a receptor and cell line dependent manner. No significant changes were observed in the analyzed signaling molecules. Cannabinoids can principally induce changes in the actin cytoskeleton and motility of glioblastoma cell lines. Additionally, single cell motility of glioblastoma is independent of their morphology. Furthermore, the observed effects seem to be independent of p44/42 MAPK and pFAK pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/30753211

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212037

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Increased expression of cannabinoid CB2 and serotonin 5-HT1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage.

Neuropharmacology

“Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2(CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical section were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30738036

https://www.sciencedirect.com/science/article/pii/S0028390819300462?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Opposite effects of cannabinoid CB1 and CB2 receptors on antipsychotic clozapine-induced cardiotoxicity.

Publication cover image

“Clozapine is an atypical antipsychotic drug that is very efficacious in treating psychosis but the risk of severe cardiotoxicity limits its clinical use.

The present study investigated the myocardial injury effects of clozapine and assessed the involvement of cannabinoid receptors in clozapine cardiotoxicity.

Our data provided evidence that cannabinoid CB1 and CB2 receptors had opposite effects and selective antagonists of CB1R or agonists of CB2R might confer protective effects against clozapine.”

https://www.ncbi.nlm.nih.gov/pubmed/30707759

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14591

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Is cannabidiol the ideal drug to treat non-motor Parkinson’s disease symptoms?

 “Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rest tremor, postural disturbances, and rigidity. PD is also characterized by non-motor symptoms such as sleep disturbances, cognitive deficits, and psychiatric disorders such as psychosis, depression, and anxiety. The pharmacological treatment for these symptoms is limited in efficacy and induce significant adverse reactions, highlighting the need for better treatment options.

Cannabidiol (CBD) is a phytocannabinoid devoid of the euphoriant and cognitive effects of tetrahydrocannabinol, and preclinical and preliminary clinical studies suggest that this compound has therapeutic effect in non-motor symptoms of PD.

In the present text, we review the clinical studies of cannabinoids in PD and the preclinical and clinical studies specifically on CBD.

We found four randomized controlled trials (RCTs) involving the administration of agonists/antagonists of the cannabinoid 1 receptor, showing that these compounds were well tolerated, but only one study found positive results (reductions on levodopa-induced dyskinesia).

We found seven preclinical models of PD using CBD, with six studies showing a neuroprotective effect of CBD.

We found three trials involving CBD and PD: an open-label study, a case series, and an RCT. CBD was well tolerated, and all three studies reported significant therapeutic effects in non-motor symptoms (psychosis, rapid eye movement sleep behaviour disorder, daily activities, and stigma). However, sample sizes were small and CBD treatment was short (up to 6 weeks). Large-scale RCTs are needed to try to replicate these results and to assess the long-term safety of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30706171

https://link.springer.com/article/10.1007%2Fs00406-019-00982-6

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome.

Neurobiology of Disease

“Intellectual disability is the most limiting hallmark of Down syndrome, for which there is no gold-standard clinical treatment yet. The endocannabinoid system is a widespread neuromodulatory system involved in multiple functions including learning and memory processes. Our results identify CB1R as a novel druggable target potentially relevant for the improvement of cognitive deficits associated with Down syndrome.”

https://www.ncbi.nlm.nih.gov/pubmed/30685352

https://www.sciencedirect.com/science/article/pii/S0969996118306855?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Modulation of the Endocannabinoid System Following Central Nervous System Injury.

ijms-logo

“Central nervous system (CNS) injury, such as stroke or trauma, is known to increase susceptibility to various infections that adversely affect patient outcomes (CNS injury-induced immunodepression-CIDS).

The endocannabinoid system (ECS) has been shown to have immunoregulatory properties. Therefore, the ECS might represent a druggable target to overcome CIDS.

Evidence suggests that cannabinoid type 2 receptor (CB₂R) activation can be protective during the early pro-inflammatory phase after CNS injury, as it limits neuro-inflammation and, therefore, attenuates CIDS severity. In the later phase post CNS injury, CB₂R inhibition is suggested as a promising pharmacologic strategy to restore immune function in order to prevent infection.”

https://www.ncbi.nlm.nih.gov/pubmed/30658442

https://www.mdpi.com/1422-0067/20/2/388

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Crystal Structure of the Human Cannabinoid Receptor CB2.

Image result for cell journal

“The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases.

Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257’s unexpected opposing functional profile of CB2 antagonism versus CB1 agonism.

Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.”

https://www.ncbi.nlm.nih.gov/pubmed/30639103

https://linkinghub.elsevier.com/retrieve/pii/S0092867418316258

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Do Endocannabinoids Regulate Glucose Reabsorption in the Kidney?

Logo Nephron

“Diabetic nephropathy (DN), a distinct manifestation of diabetic kidney disease, affects approximately 30% of patients with diabetes. While most attention has been focused on glomerular changes related to DN, there is growing evidence that tubulopathy is a key feature in the pathogenesis of this disease. The renal proximal tubule cells (RPTCs) are particularly sensitive to the deleterious effect of chronic hyperglycemia. However, the cellular changes that control the dysfunction of the RPTCs are not fully understood.

Controlling glucose reabsorption in the proximal tubules via inhibition of glucose transporters (GLUT) has emerged as a promising therapeutic in ameliorating DN.

Overactivation of the renal endocannabinoid (eCB) system via the cannabinoid-1 receptor (CB1R) contributes to the development of DN, and its blockade by globally acting or peripherally restricted CB1R antagonists has been shown to ameliorate renal dysfunction in different murine models for diabetes. Recently, we have utilized various pharmacological and genetic tools to show that the eCB/CB1R system contributes to the development of DN via regulating the expression, translocation, and activity of the facilitative GLUT2 located in the RPTCs.

These findings have the potential to be translated into therapy, and support the rationale for the preclinical development of novel renal-specific CB1R and/or GLUT2 inhibitors for the treatment of DN.”

https://www.ncbi.nlm.nih.gov/pubmed/30636250

https://www.karger.com/Article/FullText/494512

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous