The “entourage effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders.

“Mood disorders are the most prevalent mental conditions encountered in psychiatric practice. Numerous patients suffering from mood disorders present with treatment-resistant forms of depression, co-morbid anxiety, other psychiatric disorders and bipolar disorders.

Standardized essential oils (such as that of Lavender officinalis) have been shown to exert clinical efficacy in treating anxiety disorders. As endocannabinoids are suggested to play an important role in major depression, generalized anxiety and bipolar disorders, Cannabis sativa, was suggested for their treatment.

The endocannabinoid system is widely distributed throughout the body including the brain, modulating many functions. It is involved in mood and related disorders, and its activity may be modified by exogenous cannabinoids.

CB1 and CB2 receptors primarily serve as the binding sites for endocannabinoids as well as for phytocannabinoids, produced by cannabis inflorescences. However, ‘cannabis’ is not a single compound product but is known for its complicated molecular profile, producing a plethora of phytocannabinoids alongside a vast array of terpenes.

Thus, the “entourage effect” is the suggested positive contribution derived from the addition of terpenes to cannabinoids. Here we review the literature on the effects of cannabinoids and discuss the possibility of enhancing cannabinoid activity on psychiatric symptoms by the addition of terpenes and terpenoids.

Possible underlying mechanisms for the anti-depressant and anxiolytic effects are reviewed. These natural products may be an important potential source for new medications for the treatment of mood and anxiety disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31481004

http://www.eurekaselect.com/174648/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Terpenoids and Phytocannabinoids Co-Produced in Cannabis Sativa Strains Show Specific Interaction for Cell Cytotoxic Activity.

molecules-logo“Mixtures of different Cannabis sativa phytocannabinoids are more active biologically than single phytocannabinoids. However, cannabis terpenoids as potential instigators of phytocannabinoid activity have not yet been explored in detail.

Terpenoid groups were statistically co-related to certain cannabis strains rich in Δ9-tetrahydrocannabinolic acid (THCA) or cannabidiolic acid (CBDA), and their ability to enhance the activity of decarboxylase phytocannabinoids (i.e., THC or CBD) was determined.

Analytical HPLC and GC/MS were used to identify and quantify the secondary metabolites in 17 strains of C. sativa, and correlations between cannabinoids and terpenoids in each strain were determined. Column separation was used to separate and collect the compounds, and cell viability assay was used to assess biological activity.

We found that in “high THC” or “high CBD” strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines.

This was found to be most effective in natural ratios found in extracts of cannabis inflorescence. The correlation in a particular strain between THCA or CBDA and a certain set of terpenoids, and the partial specificity in interaction may have influenced the cultivation of cannabis and may have implications for therapeutic treatments.”

https://www.ncbi.nlm.nih.gov/pubmed/31438532

https://www.mdpi.com/1420-3049/24/17/3031

“Anticancer Terpenoids” https://link.springer.com/chapter/10.1007/978-3-319-14027-8_5

“Anticancer effects of phytocannabinoids” https://www.ncbi.nlm.nih.gov/pubmed/28560402

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Tandem mass spectrometric quantification of 93 terpenoids in Cannabis using static headspace (SHS) injections.

 Go to Volume 0, Issue ja“The therapeutic effect of Cannabis largely depends on the content of its pharmacologically active secondary metabolites, mainly phytocannabinoids, flavonoids and terpenoids. Recent studies suggest of therapeutic effects of specific terpenoids, as well as synergistic effects with other active compounds in the plant.

Although Cannabis contains an overwhelming milieu of terpenoids, only a limited number are currently reported and used for metabolic analysis of Cannabis chemovars. In this study, we report the development and validation of a method for simultaneous quantification of 93 terpenoids in Cannabis air-dried-inflorescences and extracts.

This method employs the full evaporation technique via a static headspace sampler, followed by gas chromatography-mass spectrometry (SHS-GC-MS/MS). In the validation process, spiked terpenoids were quantified with acceptable repeatability, reproducibility, sensitivity and accuracy. Three medical Cannabis chemovars were used to study the effect of sample preparation and extraction methods on terpenoid profiles. This method was further ap-plied for studying the terpenoid profiles of sixteen different chemovars acquired at different dates.

Our results demonstrate that sample preparation methods may significantly impact the chemical fingerprint compared to the non-treated Cannabis. This emphasizes the importance of performing SHS extraction in order to study the natural terpenoid contents of che-movars. We also concluded that most inflorescences expressed relatively unique terpenoid profiles for the most pronounced terpenoids, even when sampled at different dates, although absolute concentrations may vary due to aging.

The suggested method offer an ideal tool for terpenoid profiling of Cannabis and set the scene for more comprehensive works in the fu-ture.”

https://www.ncbi.nlm.nih.gov/pubmed/31369251

https://pubs.acs.org/doi/10.1021/acs.analchem.9b02844

“Anticancer Terpenoids”

https://link.springer.com/chapter/10.1007/978-3-319-14027-8_5

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Anti-Inflammatory Properties of Terpenoids from Cannabis.

View details for Cannabis and Cannabinoid Research cover image

“Cannabinoids are well known to have anti-inflammatory effects in mammalians; however, the Cannabis plant also contains other compounds such as terpenoids, whose biological effects have not yet been characterized. The aim of this study was to compare the anti-inflammatory properties of terpenoids with those of cannabidiol (CBD).

Materials and Methods: Essential oils prepared from three monoecious nonpsychoactive chemotypes of Cannabis were analyzed for their terpenoid content and subsequently studied pharmacologically for their anti-inflammatory properties in vitro and in vivo.

Results: In vitro, the three essential oils rich in terpenoids partly inhibited reactive oxygen intermediate and nitric oxide radical (NO) production in RAW 264.7 stimulated macrophages. The three terpenoid-rich oils exerted moderate anti-inflammatory activities in an in vivo anti-inflammatory model without affecting tumor necrosis factor alpha (TNFα) serum levels.

Conclusions: The different Cannabis chemotypes showed distinct compositions of terpenoids. The terpenoid-rich essential oils exert anti-inflammatory and antinociceptive activities in vitro and in vivo, which vary according to their composition. Their effects seem to act independent of TNFα. None of the essential oils was as effective as purified CBD. In contrast to CBD that exerts prolonged immunosuppression and might be used in chronic inflammation, the terpenoids showed only a transient immunosuppression and might thus be used to relieve acute inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30596146

https://www.liebertpub.com/doi/10.1089/can.2018.0014

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Accumulation of bioactive metabolites in cultivated medical Cannabis.

Image result for plos one

“There has been an increased use of medical Cannabis in the United States of America as more states legalize its use. Complete chemical analyses of this material can vary considerably between producers and is often not fully provided to consumers. As phytochemists in a state with legal medical Cannabis we sought to characterize the accumulation of phytochemicals in material grown by licensed commercial producers.

We report the development of a simple extraction and analysis method, amenable to use by commercial laboratories for the detection and quantification of both cannabinoids and terpenoids. Through analysis of developing flowers on plants, we can identify sources of variability of floral metabolites due to flower maturity and position on the plant. The terpenoid composition varied by accession and was used to cluster cannabis strains into specific types.

Inclusion of terpenoids with cannabinoids in the analysis of medical cannabis should be encouraged, as both of these classes of compounds could play a role in the beneficial medical effects of different cannabis strains.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

In silico gene expression profiling in Cannabis sativa.

An external file that holds a picture, illustration, etc.
Object name is f1000research-6-11455-g0001.jpg

“The cannabis plant and its active ingredients (i.e., cannabinoids and terpenoids) have been socially stigmatized for half a century. Luckily, with more than 430,000 published scientific papers and about 600 ongoing and completed clinical trials, nowadays cannabis is employed for the treatment of many different medical conditions. Nevertheless, even if a large amount of high-throughput functional genomic data exists, most researchers feature a strong background in molecular biology but lack advanced bioinformatics skills. In this work, publicly available gene expression datasets have been analyzed giving rise to a total of 40,224 gene expression profiles taken from cannabis plant tissue at different developmental stages. The resource presented here will provide researchers with a starting point for future investigations with Cannabis sativa.”  https://www.ncbi.nlm.nih.gov/pubmed/28529696

“Today, cannabis and its derivatives are successfully employed for treatment of a large number of different pathological conditions. Cannabis sativa is a versatile plant – it is being used for medical as well as for industrial purposes. Like in other plants, the cannabis genome is highly redundant and difficult to resolve. It is very likely that false negatives have caused important transcripts to still be missing. Nevertheless, these 40,224 gene expression profiles will provide researchers with a valuable resource and important genomic insights for future investigations with Cannabis sativa.”  https://f1000research.com/articles/6-69/v1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor.

cpb

“Cannabis sativa L. (cannabis) extracts, vapor produced by the Volcano vaporizer and smoke made from burning cannabis joints were analyzed by GC-flame ionization detecter (FID), GC-MS and HPLC. Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol.

Cannabinoids plus other components such as terpenoids and pyrolytic by-products were identified and quantified in all samples. Cannabis vapor and smoke was tested for cannabinoid receptor 1 (CB1) binding activity and compared to pure Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

The top five major compounds in Bedrocan extracts were Delta(9)-THC, cannabigerol (CBG), terpinolene, myrcene, and cis-ocimene in Bedrobinol Delta(9)-THC, myrcene, CBG, cannabichromene (CBC), and camphene in Bediol cannabidiol (CBD), Delta(9)-THC, myrcene, CBC, and CBG.

The major components in Bedrocan vapor (>1.0 mg/g) were Delta(9)-THC, terpinolene, myrcene, CBG, cis-ocimene and CBD in Bedrobinol Delta(9)-THC, myrcene and CBD in Bediol CBD, Delta(9)-THC, myrcene, CBC and terpinolene.

The major components in Bedrocan smoke (>1.0 mg/g) were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene.

There was no statistically significant difference between CB1 binding of pure Delta(9)-THC compared to cannabis smoke and vapor at an equivalent concentration of Delta(9)-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/20118579

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A pharmacological basis of herbal medicines for epilepsy.

“Epilepsy is the most common chronic neurological disease, affecting about 1% of the world’s population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs).

Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures.

Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals.

Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs.

Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays.

To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids.

Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs.

Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites.

Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy.

Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development.

In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/26074183

http://www.thctotalhealthcare.com/category/epilepsy-2/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

“The roots of cannabis synergy.”

“Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant.”

“Cannabis has been a medicinal plant of unparalleled versatility for millennia, but whose mechanisms of action were an unsolved mystery until the discovery of tetrahydrocannabinol (THC), the first cannabinoid receptor, CB1, and the endocannabinoids, anandamide (arachidonoylethanolamide, AEA) and 2-arachidonoylglycerol (2-AG). While a host of phytocannabinoids were discovered in the 1960s: cannabidiol (CBD), cannabigerol (CBG), cannabichromene (CBC) (Gaoni and Mechoulam, cannabidivarin (CBDV) and tetrahydrocannabivarin (THCV), the overwhelming preponderance of research focused on psychoactive THC. Only recently has renewed interest been manifest in THC analogues, while other key components of the activity of cannabis and its extracts, the cannabis terpenoids, remain understudied. The current review will reconsider essential oil (EO) agents, their peculiar pharmacology and possible therapeutic interactions with phytocannabinoids.”

“Should positive outcomes result from such studies, phytopharmaceutical development may follow. The development of zero-cannabinoid cannabis chemotypes has provided extracts that will facilitate discernment of the pharmacological effects and contributions of different fractions. Breeding work has already resulted in chemotypes that produce 97% of monoterpenoid content as myrcene, or 77% as limonene (E. de Meijer, pers. comm.). Selective cross-breeding of high-terpenoid- and high-phytocannabinoid-specific chemotypes has thus become a rational target that may lead to novel approaches to such disorders as treatment-resistant depression, anxiety, drug dependency, dementia and a panoply of dermatological disorders, as well as industrial applications as safer pesticides and antiseptics. A better future via cannabis phytochemistry may be an achievable goal through further research of the entourage effect in this versatile plant that may help it fulfil its promise as a pharmacological treasure trove.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165946/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous