Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts.

 Food Chemistry

“In this study the antioxidant effect of Cannabis sativa L. seeds and sprouts (3 and 5 days of germination) was evaluated.

Total polyphenols, flavonoids and flavonols content, when expressed on dry weight basis, were highest in sprouts; ORAC and DPPH (in vitro assays), CAA-RBC (cellular antioxidant activity in red blood cells) and hemolysis test (ex vivo assays) evidenced a good antioxidant activity higher in sprouts than in seeds. Untargeted analysis by high resolution mass spectrometry in negative ion mode allowed the identification of main polyphenols (caffeoyltyramine, cannabisin A, B, C) in seeds and of ω-6 (linoleic acid) in sprouts. Antimutagenic effect of seeds and sprouts extracts evidenced a significant decrease of mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae D7 strain.

In conclusion our results show that C. sativa seeds and sprouts exert beneficial effects on yeast and human cells and should be further investigated as a potential functional food.”

https://www.ncbi.nlm.nih.gov/pubmed/29751921

https://www.sciencedirect.com/science/article/pii/S0308814618307180?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

β-Caryophyllene (BCP) ameliorates MPP+ induced cytotoxicity.

Biomedicine & Pharmacotherapy

“Parkinson’s disease (PD) is one of the most common neurodegenerative diseases resulting from the continuous death of dopaminergic neurons in substantia nigra. MPP+ (1-methyl-4-phenylpyridinium) has been reported to be a major neurotoxin causing neurotoxic insults on dopaminergic neurons in humans.

β-Caryophyllene (BCP), an important cannabinoid derived from the essential oils of different species, has displayed pharmacological properties in different kinds of tissues and cells. However, neuroprotective effects of BCP in PD haven’t been reported before.

Our results indicate that treatment with MPP+ in SH-SY5Y cells led to a significant decrease in cell viability, which was restored by BCP. Additionally, BCP suppressed MPP+-induced release of lactic dehydrogenase (LDH) and the generation of reactive oxygen species (ROS). In contrast, BCP treatment restored the reduction in mitochondrial membrane potential (MMP) induced by MPP+. BCP treatment increased intracellular GSH and GPx activity.

Also, we found that the antioxidant effects of BCP against MPP+- induced neurotoxicity are dependent on cannabinoid receptor type 2 (CB2R). Moreover, our results indicated that BCP prevented MPP+-induced apoptosis of SH-SY5Y through inhibiting the up-regulation of cleaved Caspase-3, Bax, and restoring the expression of Bcl-2. Besides, BCP markedly suppressed HO-1 activation and c-Jun N-terminal Kinase (JNK) phosphorylation.

We conclude that BCP might act as a promising therapeutic agent against MPP+ toxicity in neuronal cells.”

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Detection of delta-9-tetrahydrocannabinol (THC) in oral fluid, blood and urine following oral consumption of low-content THC hemp oil.

 Forensic Science International

“Hemp-derivative (Cannabis sativa L.) food products containing trace levels of Δ-9-tetrahydrocannabinol (THC) are proposed for consumption in Australia and New Zealand; however, it is unclear whether use of these products will negatively affect existing drug screening protocols.

Consumption of low-content THC oil does not result in positive biological assessments.

It is therefore highly unlikely that ingestion of products containing these levels of THC will negatively impact existing region-specific drug driving enforcement protocols.”

https://www.ncbi.nlm.nih.gov/pubmed/29408718

https://www.sciencedirect.com/science/article/pii/S0379073817305492?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytochemical Aspects and Therapeutic Perspective of Cannabinoids in Cancer Treatment

Cannabis sativa L. – dried pistillate inflorescences and trichomes on their surface. (a) dried pistillate inflorescences (50% of the size); (b) non‐cystolithic trichome; (c) cystolithic trichome; (d) capitate‐sessile trichome; (e) simple bulbous trichome; (f) capitate‐stalked trichome (400×).

“Cannabis sativa L. (Cannabaceae) is one of the first plants cultivated by man and one of the oldest plant sources of fibre, food and remedies.

Cannabinoids comprise the plant‐derived compounds and their synthetic derivatives as well as endogenously produced lipophilic mediators. Phytocannabinoids are terpenophenolic secondary metabolites predominantly produced in CannabissativaL.

The principal active constituent is delta‐9‐tetrahydrocannabinol (THC), which binds to endocannabinoid receptors to exert its pharmacological activity, including psychoactive effect. The other important molecule of current interest is non‐psychotropic cannabidiol (CBD).

Since 1970s, phytocannabinoids have been known for their palliative effects on some cancer‐associated symptoms such as nausea and vomiting reduction, appetite stimulation and pain relief. More recently, these molecules have gained special attention for their role in cancer cell proliferation and death.

A large body of evidence suggests that cannabinoids affect multiple signalling pathways involved in the development of cancer, displaying an anti‐proliferative, proapoptotic, anti‐angiogenic and anti‐metastatic activity on a wide range of cell lines and animal models of cancer.”

https://www.intechopen.com/books/natural-products-and-cancer-drug-discovery/phytochemical-aspects-and-therapeutic-perspective-of-cannabinoids-in-cancer-treatment

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation.

 

 

“Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.ncbi.nlm.nih.gov/pubmed/29109461

“Cannabis sativa has a very long history of medical use. In summary, it has been demonstrated in this work that oral co-administration of cannabis or cannabis-based medicines with lipids results in extremely high levels of lipophilic cannabinoids in the intestinal lymphatic system and prominent immunomodulatory effects. Therefore, administering cannabinoids with a high-fat meal, as cannabis-containing food, or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.nature.com/articles/s41598-017-15026-z

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Challenges towards Revitalizing Hemp: A Multifaceted Crop.

Image result for cell journal

“Hemp has been an important crop throughout human history for food, fiber, and medicine. Despite significant progress made by the international research community, the basic biology of hemp plants remains insufficiently understood. Clear objectives are needed to guide future research. As a semi-domesticated plant, hemp has many desirable traits that require improvement, including eliminating seed shattering, enhancing the quantity and quality of stem fiber, and increasing the accumulation of phytocannabinoids. Methods to manipulate the sex of hemp plants will also be important for optimizing yields of seed, fiber, and cannabinoids. Currently, research into trait improvement is hindered by the lack of molecular techniques adapted to hemp. Here we review how addressing these limitations will help advance our knowledge of plant biology and enable us to fully domesticate and maximize the agronomic potential of this promising crop.”

https://www.ncbi.nlm.nih.gov/pubmed/28886910

http://www.cell.com/trends/plant-science/fulltext/S1360-1385(17)30177-2?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138517301772%3Fshowall%3Dtrue

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Roots: A Traditional Therapy with Future Potential for Treating Inflammation and Pain

Image result for cannabis and cannabinoid research

“The cannabis plant is known for its multiple uses: the leaves, flowers, seeds, stalks, and resin glands have all been exploited for food, fuel, fiber, medicine, and other uses.

The roots of the cannabis plant have a long history of medical use stretching back millennia. However, the therapeutic potential of cannabis roots has been largely ignored in modern times.

In the first century, Pliny the Elder described in Natural Histories that a decoction of the root in water could be used to relieve stiffness in the joints, gout, and related conditions. By the 17th century, various herbalists were recommending cannabis root to treat inflammation, joint pain, gout, and other conditions.

Active compounds identified and measured in cannabis roots include triterpenoids, friedelin (12.8 mg/kg) and epifriedelanol (21.3 mg/kg); alkaloids, cannabisativine (2.5 mg/kg) and anhydrocannabisativine (0.3 mg/kg); carvone and dihydrocarvone; N-( p-hydroxy-b-phenylethyl)-p-hydroxy-trans-cinnamamide (1.6 mg/kg); various sterols such as sitosterol (1.5%), campesterol (0.78%), and stigmasterol (0.56%); and other minor compounds, including choline. Of note, cannabis roots are not a significant source of D9 – tetrahydrocannabinol (THC), cannabidiol, or other known phytocannabinoids.

Conclusion: The current available data on the pharmacology of cannabis root components provide significant support to the historical and ethnobotanical claims of clinical efficacy. Certainly, this suggests the need for reexamination of whole root preparations on inflammatory and malignant conditions employing modern scientific techniques.”

http://online.liebertpub.com/doi/full/10.1089/can.2017.0028

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson’s Disease Induced by MPTP.

pharmaceuticals-logo

“Parkinson’s disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R). Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD.”  https://www.ncbi.nlm.nih.gov/pubmed/28684694

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

(-)-β-Caryophyllene, a CB2 Receptor-Selective Phytocannabinoid, Suppresses Motor Paralysis and Neuroinflammation in a Murine Model of Multiple Sclerosis.

Image result for Int J Mol Sci.

“(-)-β-caryophyllene (BCP), a cannabinoid receptor type 2 (CB2)-selective phytocannabinoid, has already been shown in precedent literature to exhibit both anti-inflammatory and analgesic effects in mouse models of inflammatory and neuropathic pain.

Herein, we endeavored to investigate the therapeutic potential of BCP on experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). Furthermore, we sought to demonstrate some of the mechanisms that underlie the modulation BCP exerts on autoimmune activated T cells, the pro-inflammatory scenery of the central nervous system (CNS), and demyelination.

Our findings demonstrate that BCP significantly ameliorates both the clinical and pathological parameters of EAE. In addition, data hereby presented indicates that mechanisms underlying BCP immunomodulatory effect seems to be linked to its ability to inhibit microglial cells, CD4+ and CD8+ T lymphocytes, as well as protein expression of pro-inflammatory cytokines. Furthermore, it diminished axonal demyelination and modulated Th1/Treg immune balance through the activation of CB2 receptor.

Altogether, our study represents significant implications for clinical research and strongly supports the effectiveness of BCP as a novel molecule to target in the development of effective therapeutic agents for MS.” https://www.ncbi.nlm.nih.gov/pubmed/28368293

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis in Chinese Medicine: Are Some Traditional Indications Referenced in Ancient Literature Related to Cannabinoids?

Image result for frontiers pharmacology

“Cannabis sativa L. has been cultivated in China for millennia for use as a fiber, food, and medicine. Cannabis sativa L. (Cannabaceae) has a long history of utilization as a fiber and seed crop in China, and its achenes (“seeds”) as well as other plant parts have been recorded in Chinese medical texts for nearly 2000 years.

While the primary applications of cannabis in Chinese medicine center around the use of the achenes, ancient indications for the female inflorescence, and other plant parts include conditions such as pain and mental illness that are the subject of current research into cannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC).

In this article, prominent historical applications of cannabis in Chinese medicine are chronologically reviewed, and indications found in ancient Chinese literature that may relate to cannabinoids such as CBD and Δ9-THC are investigated.

In recent years, cannabinoids such as CBD and Δ9-THC have attracted increased attention in the context of modern pharmacology and popular Western culture, yet little research has been done to explore the historical applications of cannabis in Chinese medicine. Given China’s long history of hemp cultivation and its rich body of un-translated medical literature, it is surprising that little academic attention has focused on exploring the ways in which cannabis was used in Chinese medicine. The importance of cannabis as a fiber and food crop in ancient China, combined with the extensive use of the achenes in medicine, makes the Chinese historical record particularly valuable.

Bencao literature opens a window into the history and culture of ancient Chinese medicine. As all parts of the cannabis plant were recorded in bencao texts, the Chinese medical literature can help to clarify many details about the historical applications of cannabis in Chinese medicine, as well as providing clues into the historical prevalence of different biotypes as ancient Chinese farmers gradually selected superior varieties for fiber and seed crops.

The significant differences in how cannabis has been employed in Chinese vs. Western medicine likely relate to differences between drug and fiber biotypes as well as cultural factors, but thus far minimal research has focused on exploring this issue. Similarly, minimal attention has been given to the topic of CBD in Chinese medical history, as even fiber-rich biotypes of cannabis that were not associated with drug use may have had potential therapeutic applications related to CBD. While this modest review can only scratch the surface of the Chinese medical literature of cannabis and the questions it raises, it is hoped that further research will help to further elucidate these questions using a multidisciplinary approach.”

http://journal.frontiersin.org/article/10.3389/fphar.2017.00108/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous