The Endocannabinoid System and Oligodendrocytes in Health and Disease.

 Image result for frontiers in neuroscience“Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.”

https://www.ncbi.nlm.nih.gov/pubmed/30416422

https://www.frontiersin.org/articles/10.3389/fnins.2018.00733/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis, cannabinoids and the endocannabinoid system – is there therapeutic potential for inflammatory bowel disease?

Image result for jcc journal

“Cannabis sativa and its extracts have been used for centuries both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date. The largest study to date being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1-CB2 Heteroreceptor Complexes.

Image result for frontiers in pharmacology

“Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties.

The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1-CB2 heteroreceptor complexes.

The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/29977202

https://www.frontiersin.org/articles/10.3389/fphar.2018.00632/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota.

Logo of jctr

“The incidence of atherosclerosis is increasing rapidly all over the world. Inflammatory processes have outstanding role in coronary artery disease (CAD) etiology and other atherosclerosis manifestations. Recently attentions have been increased about gut microbiota in many fields of medicine especially in inflammatory diseases like atherosclerosis. Ineffectiveness in gut barrier functions and subsequent metabolic endotoxemia (caused by rise in plasma lipopolysaccharide levels) is associated with low-grade chronic inflammation i.e. a recognized feature of atherosclerosis. Furthermore, the role of trimethylamine-N-oxide (TMAO), a gut bacterial metabolite has been suggested in atherosclerosis development. On the other hand, the effectiveness of gut microbiota modulation that results in TMAO reduction has been investigated. Moreover, considerable evidence supports a role for the endocannabinoid system (ECS) in atherosclerosis pathology which affects gut microbiota, but their effects on atherosclerosis are controversial. Therefore, we presented some evidence about the relationship between gut microbiota and ECS in atherosclerosis. We also presented evidences that gut microbiota modulation by pre/probiotics can have significant influence on the ECS.

Even though there are many questions which have been unanswered, studies demonstrated that mucosal barrier function disruption and subsequent gut microbiota-derived endotoxemia could contribute to cardiometabolic diseases pathogenesis. As well, number of studies revealed that TMAO in systemic circulation can activate macrophages which lead to cholesterol accumulation and subsequent foam cells formation in atherosclerotic lesions. On the other hand, accumulating evidence proposes that ECS involved in many physiological processes that are related to maintenance of gut-barrier function and inflammation regulation. Hence, although present literature review provides beneficial evidence in support of crosstalk between ECS and gut microbiota, additional studies are needed to clarify whether gut microbiota modulation can alter ECS tone and inflammation levels or not.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203867/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical Use of Cannabinoids.

“Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox-Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/30374797

https://link.springer.com/article/10.1007%2Fs40265-018-0996-1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats.

Image result for frontiers in neuroscience

“Alzheimer’s disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss.

The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation – one of the hallmarks of AD -, and on the density of synaptic proteins.

Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ).

This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.”

“Altogether, our results showed, for the first time, that the administration of an endocannabinoid can prevent cognitive, synaptic and histopatological AD-like alterations induced by STZ, thus prompting endocannabinoids as a candidate therapeutic target in AD.”  https://www.frontiersin.org/articles/10.3389/fnins.2018.00653/full
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Molecular Imaging of the Cannabinoid System in Idiopathic Parkinson’s Disease.

International Review of Neurobiology

“The endocannabinoid system is a modulator of neurotransmitter release and is involved in several physiological functions. Hence, it has been increasingly studied as a potential pharmacologic target of Parkinson’s disease.

Several preclinical and clinical studies evidenced a substantial rearrangement of the endocannabinoid system in the basal ganglia circuit following dopamine depletion. The endocannabinoid system has been additionally implicated in the regulation of neuroinflammation and neuroprotection through the activation of CB2 receptors, suggesting a potential target for disease modifying therapies in Parkinson’s disease.

In this chapter, current pharmacological and physiological knowledge on the role of the endocannabinoid system will be reviewed, focusing on preclinical studies animal models and clinical studies in patients with idiopathic Parkinson’s disease. The main strategies for imaging the brain cannabinoid system will be summarized to finally focus on in vivo imaging of patients with Parkinson’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/30314601

https://www.sciencedirect.com/science/article/pii/S0074774218300692?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids in depressive disorders.

 Life Sciences “Cannabis sativa is one of the most popular recreational and medicinal plants. Benefits from use of cannabinoid agents in epilepsy, multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and others have been suggested. It seems that the endocannabinoid system is also involved in the pathogenesis and treatment of depression, though its role in this mental disease has not been fully understood yet. Both the pro- and antidepressant activity have been reported after cannabis consumption and a number of pre-clinical studies have demonstrated that both agonist and antagonist of the endocannabinoid receptors act similarly to antidepressants. Responses to the cannabinoid agents are relatively fast, and most probably, the noradrenergic, serotoninergic, glutamatergic neurotransmission, neuroprotective activity, as well as modulation of the hypothalamic-pituitary-adrenal axis are implicated in the observed effects. Based on the published data, the endocannabinoid system evidently gives novel ideas and options in the field of antidepressant treatment, however further studies are needed to determine which group of patients could benefit from this type of therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/30290188

https://www.sciencedirect.com/science/article/pii/S0024320518306040?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid Virodhamine is an Endogenous Inhibitor of Human Cardiovascular CYP2J2 Epoxygenase.

 Biochemistry

“The human body contains endogenous cannabinoids (endocannabinoids) that elicit similar effects as Δ9-tetrahydrocanabinol, the principal bioactive component of cannabis.

The endocannabinoid virodhamine (O-AEA) is the constitutional isomer of the well-characterized cardioprotective and anti-inflammatory endocannabinoid anandamide (AEA).

The chemical structures of O-AEA and AEA contain arachidonic acid (AA) and ethanolamine, however AA in O-AEA is connected to ethanolamine via an ester linkage whereas AA in AEA is connected through an amide linkage. We show that O-AEA is found at 9.6 fold higher levels than AEA in porcine left ventricle and is involved in regulating blood pressure and cardiovascular function.

On a separate note, the cytochrome P450 (CYP) epoxygenase CYP2J2 is the most abundant CYP in the heart where it catalyzes the metabolism of AA and AA-derived eCBs to bioactive epoxides that are involved in diverse cardiovascular functions. Herein, using competitive binding studies, kinetic metabolism measurements, molecular dynamics and wound healing assays we have shown that O-AEA is an endogenous inhibitor of CYP2J2 epoxygenase.

Together, the role of O-AEA as an endogenous eCB inhibitor of CYP2J2 may provide a new mode of regulation to control the activity of cardiovascular CYP2J2 in vivo and suggests a potential cross talk between the cardiovascular endocannabinoids and cytochrome P450 system.”

https://www.ncbi.nlm.nih.gov/pubmed/30285425

https://pubs.acs.org/doi/10.1021/acs.biochem.8b00691

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders.

medicines-logo

“Following the discovery of the endocannabinoid system and its potential as a therapeutic target for various pathological conditions, growing interest led researchers to investigate the role of cannabis and its derivatives for medical purposes. The compounds Δ9-tetrahydrocannabinol and cannabidiol are the most abundant phytocannabinoids found in cannabis extracts, as well as the most studied. The present review aims to provide an overview of the current evidence for their beneficial effects in treating psychiatric disorders, including schizophrenia, anxiety, and depression. Nevertheless, further investigations are required to clarify many pending issues, especially those relative to the assessment of benefits and risks when using cannabis for therapeutic purposes, thereby also helping national and federal jurisdictions to remain updated.”

https://www.ncbi.nlm.nih.gov/pubmed/30279403

https://www.mdpi.com/2305-6320/5/4/107

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous