The Important Role of the Endocannabinoid System and the Endocannabinoidome in Gut Health.

Image result for Altern Ther Health Med journal “The endocannabinoid system is an endogenous pathway comprised of the cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands known as endocannabinoids, and the enzymes responsible for their synthesis and degradation. The endocannabinoidome extends this system to include other receptors such as TRPV1, PPARα, GPR55 and 5-HT1A. An extensive amount of research is now linking the endocannabinoidome to intestinal health through fascinating mechanisms that include endocannabinoid receptor expression in the gut and interplay with the intestinal microbiota. A dysregulated endocannabinoid system may lead to inflammatory bowel disease and colon cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31202201

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System and its Modulation by Cannabidiol (CBD).

Image result for Altern Ther Health Med. “The endocannabinoid system (ECS) is an extensive endogenous signaling system with multiple elements, the number of which may be increasing as scientists continue to elucidate its role in human health and disease. The ECS is seemingly ubiquitous in animal species and is modulated by diet, sleep, exercise, stress, and a multitude of other factors, including exposure to phytocannabinoids, like Cannabidiol (CBD). Modulating the activity of this system may offer tremendous therapeutic promise for a diverse scope of diseases, ranging from mental health disorders, neurological and movement disorders, pain, autoimmune disease, spinal cord injury, cancer, cardiometabolic disease, stroke, TBI, osteoporosis, and others.”

https://www.ncbi.nlm.nih.gov/pubmed/31202198

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Selective modulation of the cannabinoid type 1 (CB1) receptor as an emerging platform for the treatment of neuropathic pain.

“Neuropathic pain is caused by a lesion or dysfunction in the nervous system, and it may arise from illness, be drug-induced or caused by toxin exposure. Since the discovery of two G-protein-coupled cannabinoid receptors (CB1 and CB2) nearly three decades ago, there has been a rapid expansion in our understanding of cannabinoid pharmacology. This is currently one of the most active fields of neuropharmacology, and interest has emerged in developing cannabinoids and other small molecule modulators of CB1 and CB2 as therapeutics for neuropathic pain. This short review article provides an overview of the chemotypes currently under investigation for the development of novel neuropathic pain treatments targeting CB1 receptors.”

Graphical abstract: Selective modulation of the cannabinoid type 1 (CB1) receptor as an emerging platform for the treatment of neuropathic pain
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Novel CB1-ligands maintain homeostasis of the endocannabinoid-system in ω3- and ω6-long chain-PUFA deficiency.

The Journal of Lipid Research“Mammalian ω3- and ω6-PUFAs are synthesized from essential fatty acids (EFAs) or supplied by the diet. PUFAs are constitutive elements of membrane-architecture and precursors of lipid signaling molecules. EFAs and long chain PUFAs are precursors in the synthesis of endocannabinoid-ligands of the Gi/o-protein coupled cannabinoid receptors 1 and 2 in the endocannabinoid-system, which critically regulates energy homeostasis, as metabolic signaling system in hypothalamic neuronal circuits, and behavioral parameters. We utilized the auxotrophic fatty acid desaturase 2 deficient (fads2-/-) mouse, deficient in long chain PUFA-synthesis, to follow the age dependent dynamics of the PUFA pattern in the CNS-phospholipidome in unbiased dietary studies of three cohorts on sustained long chain PUFA-free, ω6-arachidonic and ω3-docosahexaenoic acid supplemented diets and their impact on the precursor pool of CB1 ligands. We discovered the transformation of eicosa-all cis-5,11,14-trienoic acid, uncommon in mammalian lipidomes, into two novel endocannabinoids, 20:35,11,14-ethanolamide and 2-20:35,11,14-glycerol, acting as ligands of CB1 in HEK293-cells. Labeling experiments excluded a Δ8-desaturase activity and proved the position-specificity of FADS2. The fads2 -/- mutant might serve as an unbiased model in vivo in the development of novel CB1-agonists and antagonists.”

https://www.ncbi.nlm.nih.gov/pubmed/31167809

http://www.jlr.org/content/early/2019/06/05/jlr.M094664

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Bipolar disorder and the endocannabinoid system.

 Image result for acta neuropsychiatrica“Bipolar disorder (BD) is a debilitating, lifelong neuropsychiatric illness characterised by unsteady mood states which vacillate from (hypo)mania to depression. Despite the availability of pharmaceutical agents which can be effective in ameliorating the acute affective symptoms and prevent episodic relapse, BD is inadequately treated in a subset of patients.

The endocannabinoid system (ECS) is known to exert neuromodulatory effects on other neurotransmitter systems critical in governing emotions. Several studies ranging from clinical to molecular, as well as anecdotal evidence, have placed a spotlight on the potential role of the ECS in the pathophysiology of BD. In this perspective, we present advantages and disadvantages of cannabis use in the management of illness course of BD and provide mechanistic insights into how this system might contribute to the pathophysiology of BD.

RESULTS:

We highlight the putative role of selective cannabinoid receptor 2 (CB2) agonists in BD and briefly discuss findings which provide a rationale for targeting the ECS to assuage the symptoms of BD. Further, data encourage basic and clinical studies to determine how cannabis and cannabinoids (CBs) can affect mood and to investigate emerging CB-based options as probable treatment approaches.

CONCLUSION:

The probable role of the ECS has been almost neglected in BD; however, from data available which suggest a role of ECS in mood control, it is justified to support conducting comprehensive studies to determine whether ECS manipulation could positively affect BD. Based on the limited available data, we suggest that activation of CB2 may stabilise mood in this disorder.”

https://www.ncbi.nlm.nih.gov/pubmed/31159897

https://www.cambridge.org/core/journals/acta-neuropsychiatrica/article/bipolar-disorder-and-the-endocannabinoid-system/0C3191AF7BECA6D5A6EBED3C94CAA57B

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment.

 Image result for frontiers in endocrinology

“When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism’s energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose).

Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic.

Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31156558

https://www.frontiersin.org/articles/10.3389/fendo.2019.00311/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System: A New Treatment Target for Obsessive Compulsive Disorder?

View details for Cannabis and Cannabinoid Research cover image

“Obsessive-compulsive disorder (OCD) is a disabling illness that is associated with significant functional impairment. Although evidence-based pharmacotherapies exist, currently available medications are ineffective in some patients and may cause intolerable side effects in others. There is an urgent need for new treatments.

Discussion: A growing body of basic and clinical research has showed that the endocannabinoid system (ECS) plays a role in anxiety, fear, and repetitive behaviors. At the same time, some patients with OCD who smoke cannabis anecdotally report that it relieves their symptoms and mitigates anxiety, and several case reports describe patients whose OCD symptoms improved after they were treated with cannabinoids. Taken together, these findings suggest that the ECS could be a potential target for novel medications for OCD. In this study, we review evidence from both animal and human studies that suggests that the ECS may play a role in OCD and related disorders. We also describe findings from studies in which cannabinoid drugs were shown to impact symptoms of these conditions.

Recent studies in both humans and animals have shown a critical role for the ECS in anxiety, stress, fear, and repetitive/habitual behaviors. Moreover, many patients with OCD who use cannabis anecdotally report that it improves their symptoms and reduces anxiety.

Conclusions: An emerging body of evidence suggests that the ECS plays a role in OCD symptoms and may be a target for the development of novel medications. Further exploration of this topic through well-designed human trials is warranted.”

https://www.liebertpub.com/doi/10.1089/can.2018.0049

“Can cannabinoids help treat obsessive-compulsive disorder?”  https://eurekalert.org/pub_releases/2019-05/mali-cch053119.php

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Modulation of the Endocannabinoid System as a Potential Anticancer Strategy.

 Image result for frontiers in pharmacology“Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoidreceptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31143113

“In addition to the palliative effects of cannabinoid compounds in cancer treatment, the endocannabinoid system provides several targets for systemic anticancer treatment. Accordingly, preclinical studies suggest cannabinoids inhibit cancer progression via inhibition of cancer cell proliferation, neovascularization, invasion and chemoresistance, as well as induction of apoptosis, autophagy and increase of tumor immune surveillance.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.00430/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Retrograde activation of CB1R by muscarinic receptors protects against central organophosphorus toxicity.

Neuropharmacology“The acute toxicity of organophosphorus-based compounds is primarily a result of acetylcholinesterase inhibition in the central and peripheral nervous systems. The resulting cholinergic crisis manifests as seizure, paralysis, respiratory failure and neurotoxicity. Though overstimulation of muscarinic receptors is the mechanistic basis of central organophosphorus (OP) toxicities, short-term changes in synapse physiology that precede OP-induced seizures have not been investigated in detail. To study acute effects of OP exposure on synaptic function, field excitatory postsynaptic potentials (fEPSPs) were recorded from Schaffer collateral synapses in the mouse hippocampus CA1 stratum radiatum during perfusion with various OP compounds. Administration of the OPs paraoxon, soman or VX rapidly and stably depressed fEPSPs via a presynaptic mechanism, while the non-OP proconvulsant tetramethylenedisulfotetramine had no effect on fEPSP amplitudes. OP-induced presynaptic long-term depression manifested prior to interictal spiking, occurred independent of recurrent firing, and did not require NMDA receptor currents, suggesting that it was not mediated by activity-dependent calcium uptake. Pharmacological dissection revealed that the presynaptic endocannabinoid type 1 receptor (CB1R) as well as postsynaptic M1 and M3 muscarinic acetylcholine receptors were necessary for OP-LTD. Administration of CB1R antagonists significantly reduced survival in mice after a soman challenge, revealing an acute protective role for endogenous CB1R signaling during OP exposure. Collectively these data demonstrate that the endocannabinoid system alters glutamatergic synaptic function during the acute response to OP acetylcholinesterase inhibitors.”

https://www.ncbi.nlm.nih.gov/pubmed/31132436

“CB1R activation represents a novel therapy to mitigate acute OP toxicity”

https://www.sciencedirect.com/science/article/pii/S002839081930190X?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Evidence for the use of cannabinoids in Parkinson’s disease.

 “Cannabis and synthetic cannabinoid formulations have now been legally approved in several countries for treatment of patients with Parkinson’s disease (PD). Hence, PD patients consult physicians more frequently for prescription of cannabinoids to alleviate symptoms that might not respond well to dopaminergic treatment. Despite the increasing volume of research generated in the field of cannabinoids and their effect on Parkinson’s disease, there is still paucity of sufficient clinical data about the efficacy and safety in PD patients. There is increasing understanding of the endocannabinoid system, and the distribution of cannabinoid receptors in basal ganglia structures might suggest potential benefit on parkinsonian symptoms. Concerning clinical research, only one of to date four conducted randomized placebo-controlled trials showed an effect on motor symptoms with alleviation of levodopa-induced dyskinesia. There are a growing number of uncontrolled trials and case reports that suggest beneficial effects of cannabinoids in PD patients. However, the variety of substances investigated, the varying routes of intake, differing doses and time courses make it difficult to compare data. We here provide an overview of the current literature in this field and discuss a pragmatic approach for the clinical use of cannabinoids in PD.”

https://www.ncbi.nlm.nih.gov/pubmed/31131434

https://link.springer.com/article/10.1007%2Fs00702-019-02018-8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous