Cannabinoids and inflammation: Implications for People Living with HIV.

Image result for wolters kluwer “Thanks to the success of modern antiretroviral therapy (ART), people living with HIV (PLWH) have life expectancies which approach that of persons in the general population. However, despite the ability of ART to suppress viral replication, PLWH have high levels of chronic systemic inflammation which drives the development of comorbidities such as cardiovascular disease, diabetes and non-AIDS associated malignancies.

Historically, cannabis has played an important role in alleviating many symptoms experienced by persons with advanced HIV infection in the pre-ART era and continues to be used by many PLWH in the ART era, though for different reasons.

Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD) are the phytocannabinoids which have received most attention for their medicinal properties. Due to their ability to suppress lymphocyte proliferation and inflammatory cytokine production, there is interest in examining their therapeutic potential as immunomodulators.

CB2 receptor activation has been shown in vitro to reduce CD4 T-cell infection by CXCR4-tropic HIV and to reduce HIV replication.

Studies involving SIV-infected macaques have shown that Δ-THC can reduce morbidity and mortality and has favourable effects on the gut mucosal immunity. Furthermore, ΔTHC administration was associated with reduced lymph node fibrosis and diminished levels of SIV proviral DNA in spleens of rhesus macaques compared with placebo-treated macaques.

In humans, cannabis use does not induce a reduction in peripheral CD4 T-cell count or loss of HIV virological control in cross-sectional studies. Rather, cannabis use in ART-treated PLWH was associated with decreased levels of T-cell activation, inflammatory monocytes and pro-inflammatory cytokines secretion, all of which are related to HIV disease progression and co-morbidities.

Randomized clinical trials should provide further insights into the ability of cannabis and cannabinoid-based medicines to attenuate HIV-associated inflammation. In turn, these findings may provide a novel means to reduce morbidity and mortality in PLWH as adjunctive agents to ART.”

https://www.ncbi.nlm.nih.gov/pubmed/31408029

https://insights.ovid.com/crossref?an=00002030-900000000-96855

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells.

 “Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor that has neuroprotective and anti-inflammatory effects, regulating more than 250 genes. As NRF2, cannabinoid receptor type 2 (CB2) is also implicated in the preservation of neurons against glia-driven inflammation. To this concern, little is known about the regulation pathways implicated in CB2 receptor expression. In this study, we analyze whether NRF2 could modulate the transcription of CB2 in neuronal and microglial cells. Bioinformatics analysis revealed an antioxidant response element in the promoter sequence of the CB2 receptor gene. Further analysis by chemical and genetic manipulations of this transcription factor demonstrated that NRF2 is not able to modulate the expression of CB2 in neurons. On the other hand, at the level of microglia, the expression of CB2 is NRF2-dependent. These results are related to the differential levels of expression of both genes regarding the brain cell type. Since modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neurodegeneration, our findings will contribute to disclose the potential of CB2 as a novel target for treating different pathologies.”

https://www.ncbi.nlm.nih.gov/pubmed/31385133

https://link.springer.com/article/10.1007%2Fs10571-019-00719-y

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Stable Adult Hippocampal Neurogenesis in Cannabinoid Receptor CB2 Deficient Mice.

ijms-logo “The G-protein coupled cannabinoid receptor 2 (CB2) has been implicated in the regulation of adult neurogenesis in the hippocampus. The contribution of CB2 towards basal levels of proliferation and the number of neural progenitors in the subgranular zone (SGZ) of the dentate gyrus, however, remain unclear. We stained hippocampal brain sections of 16- to 17-week-old wildtype and CB2-deficient mice, for neural progenitor and immature neuron markers doublecortin (DCX) and calretinin (CR) and for the proliferation marker Ki67 and quantified the number of positive cells in the SGZ. The quantification revealed that CB2 deficiency neither altered overall cell proliferation nor the size of the DCX+ or DCX and CR double-positive populations in the SGZ compared to control animals. The results indicate that CB2 might not contribute to basal levels of adult neurogenesis in four-month-old healthy mice. CB2 signaling might be more relevant in conditions where adult neurogenesis is dynamically regulated, such as neuroinflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31374821

“Cannabinoids have been linked to the regulation of adult neurogenesis (AN), a process in the mammalian brain that takes place in stem cell niches in the adult brain and is responsible for the continued generation of new neurons.”

https://www.mdpi.com/1422-0067/20/15/3759/htm

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

β-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in Mice Through a Cross-Talk between CB2 and PPAR-γ Receptors.

biomolecules-logo “β-caryophyllene (BCP) is a cannabinoid receptor 2 (CB2) agonist that tempers inflammation.

An interaction between the CB2 receptor and peroxisome proliferator-activated receptor gamma (PPAR-γ) has been suggested and PPAR-γ activation exerts anti-arthritic effects.

The aim of this study was to characterize the therapeutic activity of BCP and to investigate PPAR-γ involvement in a collagen antibody induced arthritis (CAIA) experimental model.

BCP significantly hampered the severity of the disease, reduced relevant pro-inflammatory cytokines, and increased the anti-inflammatory cytokine IL-13. BCP also decreased joint expression of matrix metalloproteinases 3 and 9. Arthritic joints showed increased COX2 and NF-ĸB mRNA expression and reduced expression of the PPARγ coactivator-1 alpha, PGC-1α, and PPAR-γ. These conditions were reverted following BCP treatment.

Finally, BCP reduced NF-ĸB activation and increased PGC-1α and PPAR-γ expression in human articular chondrocytes stimulated with LPS. These effects were reverted by AM630, a CB2 receptor antagonist.

These results suggest that BCP ameliorates arthritis through a cross-talk between CB2 and PPAR-γ.”

https://www.ncbi.nlm.nih.gov/pubmed/31370242

https://www.mdpi.com/2218-273X/9/8/326

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The curative effect of cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion.

Fundamental & Clinical Pharmacology banner“Ischemia and reperfusion of intestinal tissue (intestinal I/R) induces disruption of ileal contractility and chain responses of inflammatory.

The aim of this study was to reveal whether therapeutic value of cannabinoid 2 (CB2) receptor activity in the intestinal I/R, via to the exogenous administration of CB2 agonist (AM-1241).

Intestinal I/R injury were performed through 30 min ischemia and 150 min reperfusion of mesenteric artery in Wistar rats. The pre-administered doses of 0.1, 1, and 5 mg/kg of CB2 agonist were studied to inhibit inflammation of intestinal I/R injury including ileum smooth muscle contractility, polymorphonuclear cell migration, oxidant/antioxidant defence system, and provocative cytokines.

Pre-administration with CB2 receptor agonist ensured to considerable improving the disrupted contractile responses in ileum smooth muscle along with decreased the formation of MDA that production of lipid peroxidation, reversed the depleted glutathione, inhibited the expression of TNF-α and of IL-1β in the intestinal I/R of rats.

Taken together results of this research, the agonistic activity of CB2 receptor for healing of intestinal I/R injury is ensuring associated with anti-inflammatory mechanisms such as the inhibiting of migration of inflammatory polymorphonuclear cells that origin of acute and initial responses of inflammation, the inhibiting of production of provocative and pro-inflammatory cytokines like TNF-α and IL-1β, the rebalancing of oxidant/antioxidant redox system disrupted in injury of reperfusion period, and the supporting of physiologic defensive systems in endothelial and inducible inflammatory cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31373049

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12502

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabichromene is a cannabinoid CB2 receptor agonist.

British Journal of Pharmacology banner“Cannabichromene (CBC) is one of the most abundant phytocannabinoids in Cannabis spp. It has modest anti-nociceptive and anti-inflammatory effects and potentiates some effects of Δ9 – tetrahydrocannabinol (THC) in vivo. How CBC exerts these effects is poorly defined and there is little information about its efficacy at cannabinoid receptors. We sought to determine the functional activity of CBC at CB1 and CB2 receptors.

KEY RESULTS:

CBC activated CB2 but not CB1 receptors to produce a hyperpolarization of AtT20 cells. This activation was inhibited by a CB2 antagonist AM630, and sensitive to pertussis toxin. Application of CBC reduced activation of CB2 receptors (but not CB1 receptors) by subsequent co-application of CP55,940, an efficacious CB1 and CB2 agonist. Continuous CBC application induced loss of cell surface CB2 receptors and desensitisation of the CB2-induced hyperpolarization.

CONCLUSIONS AND IMPLICATIONS:

CBC is a selective CB2 receptor agonist displaying higher efficacy than THC in hyperpolarising AtT20 cells. CBC can also recruit CB2 receptor regulatory mechanisms. CBC may contribute to the potential therapeutic effectiveness of some cannabis preparations, potentially through CB2-mediated modulation of inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31368508

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14815

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Quetiapine induces myocardial necroptotic cell death through bidirectional regulation of cannabinoid receptors.

Toxicology Letters

“Quetiapine is a common atypical antipsychotic used to treat mental disorders such as schizophrenia, bipolar disorder, and major depressive disorder. There has been increasing number of reports describing its cardiotoxicity. However, the molecular mechanisms underlying quetiapine-induced myocardial injury remain largely unknown.

Herein, we reported a novel cell death type, quetiapine-induced necroptosis, which accounted for quetiapine cardiotoxicity in mice and proposed novel therapeutic strategies.

Quetiapine-treated hearts showed inflammatory infiltration and evident fibrosis after 21-day continuous injection. The specific increases of protein levels of RIP3, MLKL and the phosphorylation of MLKL showed that quetiapine-induced necroptotic cell death both in vivo and in vitro. Pharmacologic blockade of necroptosis using its specific inhibitor Necrostatin-1 attenuated quetiapine-induced myocardial injury in mice.

In addition, quetiapine imbalanced the endocannabinoid system and caused opposing effects on two cannabinoid receptors (CB1R and CB2R).

Specific antagonists of CB1R (AM 281, Rimonabant), but not its agonist ACEA significantly ameliorated the heart histopathology induced by chronic quetiapine exposure. By contrast, specific agonists of CB2R (JWH-133, AM 1241), but not its antagonist AM 630 exerted beneficial roles against quetiapine cardiotoxicity.

The protective agents (AM 281, Rimonabant, AM 1241, and JWH-133) consistently inactivated the quetiapine-induced necroptosis signaling. Quetiapine bidirectionally regulates cannabinoid receptors and induces myocardial necroptosis, leading to cardiac toxic effects.

Therefore, pharmacologic inhibition of CB1R or activation of CB2R represents promising therapeutic strategies against quetiapine-induced cardiotoxicity.”

https://www.ncbi.nlm.nih.gov/pubmed/31220554

https://www.sciencedirect.com/science/article/pii/S0378427419301766?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Alcohol-induced conditioned place preference is modulated by CB2 cannabinoid receptors and modifies levels of endocannabinoids in the mesocorticolimbic system.

Pharmacology Biochemistry and Behavior

“The endocannabinoid (eCB) system is a particularly important neuronal mechanism implicated in alcohol use disorders. Animal models are key to broadening our knowledge of the neurobiological mechanisms underlying alcohol dependence.

This study has two main aims: i) to assess how eCB levels in different brain areas are modified by alcohol-induced conditioning place preference (CPP), and ii) to study how cannabinoid type 2 receptor (CB2R) is involved in alcohol-rewarding properties, using pharmacological manipulation in C57BL/6 mice.

Our results suggest that the eCB system is dysregulated throughout the mesocorticolimbic system by repeated alcohol exposure during the CPP paradigm, and that levels of anandamide (AEA) and several other N-acylethanolamines are markedly decreased in the medial prefrontal cortex and ventral midbrain of alcohol-CPP mice.

We also observed that the administering an antagonist/inverse agonist of the CB2R (AM630) during the acquisition phase of CPP reduced the rewarding effects of alcohol. However, activating CB2R signalling using the agonist JWH133 seems to reduce both alcohol- and food-rewarding behaviours. Therefore, our findings indicate that the rewarding effects of alcohol are related to its disruptive effect on AEA and other N-acylethanolamine signalling pathways.

Thus, pharmacological manipulation of CB2R is an interesting candidate treatment for alcohol use disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31220547

https://www.sciencedirect.com/science/article/pii/S0091305719300656?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Opioid-Sparing Effects of Cannabinoids on Morphine Analgesia: Participation of CB1 and CB2 Receptors.

British Journal of Pharmacology banner“Much of the opioid epidemic arose from abuse of prescription opioid drugs.

This study sought to determine if the combination of a cannabinoid with an opioid could produce additive or synergistic effects on pain, allowing reduction in the opioid dose needed for maximal analgesia.

CONCLUSIONS AND IMPLICATIONS:

The ability of a cannabinoid to produce an additive or synergistic effect on analgesia when combined with morphine varies with the pain assay and may be mediated by CB1 or CB2 receptors. These results hold the promise of using cannabinoids to reduce the dose of opioids for analgesia in certain pain conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/31218677

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14769

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol inhibits sucrose self-administration by CB1 and CB2 receptor mechanisms in rodents.

Addiction Biology banner

“A growing number of studies suggest therapeutic applications of cannabidiol (CBD), a recently U.S. Food and Drug Administration (FDA)-approved medication for epilepsy, in treatment of many other neuropsychological disorders. However, pharmacological action and the mechanisms by which CBD exerts its effects are not fully understood.

Here, we examined the effects of CBD on oral sucrose self-administration in rodents and explored the receptor mechanisms underlying CBD-induced behavioral effects using pharmacological and transgenic approaches.

Systemic administration of CBD produced a dose-dependent reduction in sucrose self-administration in rats and in wild-type (WT) and CB1-/- mice but not in CB2-/- mice. CBD appeared to be more efficacious in CB1-/- mice than in WT mice.

Similarly, pretreatment with AM251, a CB1R antagonist, potentiated, while AM630, a selective CB2R antagonist, blocked CBD-induced reduction in sucrose self-administration, suggesting the involvement of CB1 and CB2 receptors.

Taken together, the present findings suggest that CBD may have therapeutic potential in reducing binge eating and the development of obesity.”

https://www.ncbi.nlm.nih.gov/pubmed/31215752

https://onlinelibrary.wiley.com/doi/abs/10.1111/adb.12783

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous