The current state and future perspectives of cannabinoids in cancer biology.

Cancer Medicine

“To date, cannabinoids have been allowed in the palliative medicine due to their analgesic and antiemetic effects, but increasing number of preclinical studies indicates their anticancer properties. Cannabinoids exhibit their action by a modulation of the signaling pathways crucial in the control of cell proliferation and survival. Many in vitro and in vivo experiments have shown that cannabinoids inhibit proliferation of cancer cells, stimulate autophagy and apoptosis, and have also a potential to inhibit angiogenesis and metastasis. In this review, we present an actual state of knowledge regarding molecular mechanisms of cannabinoids’ anticancer action, but we discuss also aspects that are still not fully understood such as the role of the endocannabinoid system in a carcinogenesis, the impact of cannabinoids on the immune system in the context of cancer development, or the cases of a stimulation of cancer cells’ proliferation by cannabinoids. The review includes also a summary of currently ongoing clinical trials evaluating the safety and efficacy of cannabinoids as anticancer agents.”

https://www.ncbi.nlm.nih.gov/pubmed/29473338

http://onlinelibrary.wiley.com/doi/10.1002/cam4.1312/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis.

Journal of Physiology and Biochemistry

“Among a variety of phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells.

Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death.

The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability.

These data indicate that cannabinoids modulate endometrial cancer cell death.

Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma.

Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/29441458

https://link.springer.com/article/10.1007%2Fs13105-018-0611-7

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

Logo of cddis

“Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells.

Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells.

Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death.

Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance.

Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD.

Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD.

The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/24309936

“The non-psychoactive plant cannabinoid, cannabidiol (CBD), alone has strong anti-inflammatory and immunosuppressive effects in diverse animal models of disease such as diabetes, cancer, rheumatoid arthritis and multiple sclerosis. In addition, CBD has been reported to have anxiolytic, antiemetic and antipsychotic effects. Moreover, CBD has been shown to possess antitumor activity in human breast carcinoma and to effectively reduce primary tumor mass, as well as size and number of lung metastasis in preclinical animal models of breast cancer.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877544/

“In summary, in this study we have identified VDAC1 as a new molecular target for CBD. Our study suggests that CBD-induced cell death may occur through the inhibition of VDAC1 conductance and that this interaction may be responsible for the anticancer and immunosuppressive properties of CBD.”

https://www.nature.com/articles/cddis2013471

“Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-CancerTherapeutics.” https://www.ncbi.nlm.nih.gov/pubmed/28824871

“Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.”  https://www.ncbi.nlm.nih.gov/pubmed/25448878

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

“In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells.
The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines.
Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 μM concentration.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hypoxia-induced inhibition of the endocannabinoid system in glioblastoma cells.

Journal Cover

“The endocannabinoid system plays an important role in the regulation of physiological and pathological conditions, including inflammation and cancer.

Hypoxia is a fundamental phenomenon for the establishment and maintenance of the microenvironments in various physiological and pathological conditions. However, the influence of hypoxia on the endocannabinoid system is not fully understood. In the present study, we investigated the effects of hypoxia on the endocannabinoid system in malignant brain tumors.

Although cannabinoid receptor (CB) engagement induces cell death in U-87 MG cells in normoxic conditions, CB agonist-induced death was attenuated in hypoxic conditions. These results suggest that hypoxia modifies the endocannabinoid system in glioblastoma cells.

Hypoxia-induced inhibition of the endocannabinoid system may aid the development of glioblastoma.”

https://www.ncbi.nlm.nih.gov/pubmed/29130103

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Synthetic Cannabinoid WIN 55,212-2 Elicits Death in Human Cancer Cell Lines.

Image result for anticancer res. journal

“Studies have revealed that cancer might be treated with cannabinoids since they can influence cancer cell survival. These findings suggest an alternative treatment option to chemo- and radiotherapy, that are associated with numerous adverse side-effects for the patients.

MATERIALS AND METHODS:

Viability staining was conducted on lung cancer, testicular cancer and neuroblastoma cells treated with different concentrations of the synthetic cannabinoid WIN 55,212-2 and the percentage of dead cells was compared. Activity of apoptosis-related enzymes was investigated by the presence of DNA ladder in gel electrophoresis.

RESULTS:

Treatment with different WIN 55,212-2 concentrations led to a significant dose-dependent reduction of cell viability. A DNA ladder was observed after WIN 55,212-2 treatment of testicular cancer and lung cancer cells.

CONCLUSION:

The application of WIN 55,212-2 was found to trigger cell death in the investigated cell lines. The decline in lung cancer and testicular cancer cell viability seems to have been caused by apoptosis. These findings may contribute to development of alternative cancer therapy strategies.”

https://www.ncbi.nlm.nih.gov/pubmed/29061818

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Synergistic interaction of the cannabinoid and death receptor systems: A potential target for future cancer therapies?

FEBS Letters

“Cannabinoid receptors have been shown to interact with other receptors, including Tumor Necrosis Factor Receptor Superfamily (TNFRS) members, to induce cancer cell death. When cannabinoids and death-inducing ligands (including TRAIL) are administered together, they have been shown to synergize and demonstrate enhanced antitumor activity in vitro. Certain cannabinoid ligands have been shown to sensitize cancer cells and synergistically interact with members of the TNFRS, thus suggesting that the combination of cannabinoids with death receptor (DR) ligands induces additive or synergistic tumor cell death. This review summarizes recent findings on the interaction of the cannabinoid and DR systems and suggests possible clinical co-application of cannabinoids and DR ligands in the treatment of various malignancies.”

https://www.ncbi.nlm.nih.gov/pubmed/28948607

http://onlinelibrary.wiley.com/doi/10.1002/1873-3468.12863/abstract?systemMessage=Wiley+Online+Library+will+be+unavailable+on+Saturday+7th+Oct+from+03.00+EDT+%2F+08%3A00+BST+%2F+12%3A30+IST+%2F+15.00+SGT+to+08.00+EDT+%2F+13.00+BST+%2F+17%3A30+IST+%2F+20.00+SGT+and+Sunday+8th+Oct+from+03.00+EDT+%2F+08%3A00+BST+%2F+12%3A30+IST+%2F+15.00+SGT+to+06.00+EDT+%2F+11.00+BST+%2F+15%3A30+IST+%2F+18.00+SGT+for+essential+maintenance.+Apologies+for+the+inconvenience+caused+.

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways.

Image result for oncotarget

“Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The challenging problem in cancer treatment is to find a way to upregulate radiosensitivity of GBM while protecting neurons and neural stem/progenitor cells in the brain. The goal of the present study was upregulation of the cytotoxic effect of γ-irradiation in GBM by non-psychotropic and non-toxic cannabinoid, cannabidiol (CBD).

We emphasized three main aspects of signaling mechanisms induced by CBD treatment (alone or in combination with γ-irradiation) in human GBM that govern cell death: 1) CBD significantly upregulated the active (phosphorylated) JNK1/2 and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2 and phospho-AKT1 levels. MAPK p38 was one of the main drivers of CBD-induced cell death, while death levels after combined treatment of CBD and radiation were dependent on both MAPK p38 and JNK. Both MAPK p38 and JNK regulate the endogenous TRAIL expression. 2) NF-κB p65-P(Ser536) was not the main target of CBD treatment and this transcription factor was found at high levels in CBD-treated GBM cells. Additional suppression of p65-P(Ser536) levels using specific small molecule inhibitors significantly increased CBD-induced apoptosis. 3) CBD treatment substantially upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand and receptor levels followed by apoptosis.

Our results demonstrate that radiation-induced death in GBM could be enhanced by CBD-mediated signaling in concert with its marginal effects for neural stem/progenitor cells and astrocytes. It will allow selecting efficient targets for sensitization of GBM and overcoming cancer therapy-induced severe adverse sequelae.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoids modulate apoptosis in endometriosis and adenomyosis.

Cover image

“Adenomyosis that is a form of endometriosis is the growth of ectopic endometrial tissue within the muscular wall of the uterus (myometrium), which may cause dysmenorrhea and infertility. Endocannabinoid mediated apoptotic mechanisms of endometriosis and adenomyosis are not known. We hypothesized that the down regulation of endocannabinoid receptors and/or alteration in their regulatory enzymes may have a direct role in the pathogenesis of endometriosis and adenomyosis through apoptosis.

Endocannabinoid receptors CB1 and CB2, their synthesizing and catabolizing enzymes (FAAH, NAPE-PLD, DAGL, MAGL) and the apoptotic indexes were immunohistochemically assessed in endometriotic and adenomyotic tissues. Findings were compared to normal endometrium and myometrium. Endometrial adenocarcinoma (Ishikawa) and ovarian endometriosis cyst wall stromal (CRL-7566) cell lines were furthermore cultured with or without cannabinoid receptor agonists. The IC50 value for CB1 and CB2 receptor agonists was quantified. Cannabinoid agonists on cell death were investigated by Annexin-V/Propidium iodide labeling with flow cytometry. CB1 and CB2 receptor levels decreased in endometriotic and adenomyotic tissues compared to the control group (p=0,001 and p=0,001). FAAH, NAPE-PLD, MAGL and DAGL enzyme levels decreased in endometriotic and adenomyotic tissues compared to control (p=0,001, p=0,001, p=0,001 and p=0,002 respectively). Apoptotic cell indexes both in endometriotic and adenomyotic tissues also decreased significantly, compared to the control group (p=0,001 and p=0,001). CB1 and CB2 receptor agonist mediated dose dependent fast anti-proliferative and pro-apoptotic effects were detected in Ishikawa and ovarian endometriosis cyst wall stromal cell lines (CRL-7566).

Endocannabinoids are suggested to increase apoptosis mechanisms in endometriosis and adenomyosis. CB1 and CB2 antagonists can be considered as potential medical therapeutic agents for endometriosis and adenomyosis.”

https://www.ncbi.nlm.nih.gov/pubmed/28549792

http://www.sciencedirect.com/science/article/pii/S0065128116303154

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice.

 

Related image

“Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function.

However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive.

Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice. These increases were attenuated by CB1R antagonists (i.e., AM251 and rimonabant), an ERK inhibitor (U0126), or dopamine D2R antagonist (sulpiride).

CB1R agonist-induced toxic effects were significantly attenuated by CB1R knockout, CB1R antagonists or PKCδ knockout.

Therefore, our results suggest that interaction between D2R, ERK and CB1R is critical for MA-induced dopaminergic neurotoxicity and that PKCδ mediates dopaminergic damage induced by high-doses of CB1R agonist.”

https://www.ncbi.nlm.nih.gov/pubmed/28363605

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous