A Critical Review of the Role of the Cannabinoid Compounds Δ 9-Tetrahydrocannabinol (Δ 9-THC) and Cannabidiol (CBD) and their Combination in Multiple Sclerosis Treatment

molecules-logo“Many people with MS (pwMS) use unregulated cannabis or cannabis products to treat the symptoms associated with the disease. In line with this, Sativex, a synthetic combination of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) has been approved to treat symptoms of spasticity.

In animals, CBD is effective in reducing the amounts of T-cell infiltrates in the spinal cord, suggesting CBD has anti-inflammatory properties. By doing this, CBD has shown to delay symptom onset in animal models of multiple sclerosis and slow disease progression. Importantly, combinations of CBD and Δ9-THC appear more effective in treating animal models of multiple sclerosis.

While CBD reduces the amounts of cell infiltrates in the spinal cord, Δ9-THC reduces scores of spasticity. In human studies, the results are less encouraging and conflict with the findings in animals. Drugs which deliver a combination of Δ9-THC and CBD in a 1:1 ratio appear to be only moderately effective in reducing spasticity scores, but appear to be almost as effective as current front-line treatments and cause less severe side effects than other treatments, such as baclofen (a GABA-B receptor agonist) and tizanidine (an α2 adrenergic receptor agonist).

The findings of the studies reviewed suggest that cannabinoids may help treat neuropathic pain in pwMS as an add-on therapy to already established pain treatments.

Long term double-blind placebo studies are greatly needed to further our understanding of the role of cannabinoids in multiple sclerosis treatment.”

https://pubmed.ncbi.nlm.nih.gov/33113776/

https://www.mdpi.com/1420-3049/25/21/4930

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol (CBD) enhanced the hippocampal immune response and autophagy of APP/PS1 Alzheimer’s mice uncovered by RNA-seq

 Life Sciences“Alzheimer’s disease (AD) is a central nervous system disease characterized by dementia, which has now become a major threat to global health.

Cannabidiol (CBD) is a natural component extracted from the hemp plant and exhibits multiple mechanisms to improve the pathological process of AD in vitro and in vivo. However, its underlying molecular mechanism is still unclear.

This study attempts to reveal its common mechanism through transcriptome sequence.

This study illustrated that CBD may improve the pathological process of AD by enhancing immune system response and autophagy pathway.”

https://pubmed.ncbi.nlm.nih.gov/33096116/

https://www.sciencedirect.com/science/article/abs/pii/S0024320520313771?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Plant-derived natural therapeutics targeting cannabinoid receptors in metabolic syndrome and its complications: A review

 Biomedicine & Pharmacotherapy“The endocannabinoid system (ECS) is natural physiological system in the humans. The presence of the ECS system involves different roles in body. The endocannabinoid system involves regulation of most of the centers, which regulates the hunger and leads to changes in the weight.

In the present article, we reviewed the role of natural cannabinoid compounds in metabolic disorders and related complications. We studied variety of a plant-derived cannabinoids in treating the metabolic syndrome including stoutness, fatty acid liver diseases, insulin obstruction, dementia, hypertension, lipid abnormalities, non-alcoholic steatohepatitis, endothelial damage, and polycystic ovarian syndrome and so on.

The activation of cannabinoid receptors demonstrates a significant number of beneficial approaches concerning metabolic syndrome and reduces the pro-inflammatory cytokines on account of aggravation, decreased oxidative stress and uneasiness, diminishes liver fibrosis, with reduces adiponectin.

Pre-clinical investigations of plant-derived cannabinoids resulted in promising outcomes.

The different distinctive plant-derived cannabinoids were discovered like cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), and cannabidiol (CBG). It has been observed that endogenous cannabinoids and plant-derived cannabinoids have an advantageous impact on limiting the metabolic disorder arising due to lifestyle changes.”

https://pubmed.ncbi.nlm.nih.gov/33113429/

https://www.sciencedirect.com/science/article/pii/S0753332220310817?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Update on cannabis and cannabinoids for cancer pain

Current Issue Cover Image “The prevalence of cancer pain will continue to rise as pain is common among the survivorship and general cancer population. As interest in cannabis and cannabinoids for medicinal use including pain management continues to rise, there is growing need to update and review the current state of evidence for their use. The literature was searched for articles in English with key words cannabis, cannabinoids, and cancer pain. The sources of articles were PubMed, Embase, and open Google search.

Recent findings: In a double-blind randomized placebo-controlled trial including a 3-week treatment period of nabiximol for advanced cancer patients with pain refractory to optimized opiate therapy, improvements in average pain were seen in the intention to treat population (P = 0.0854) and per- protocol population (P = 0.0378).

Summary: To date, preclinical data has demonstrated evidence to suggest promising potential for cancer pain and the urgent need to translate this into clinical practice. Unfortunately, due to limited data, for adults with advanced cancer being treated with opiate therapy, the addition of cannabis or cannabinoids is not currently supported to address cancer pain effectively.”

https://pubmed.ncbi.nlm.nih.gov/33110020/

https://journals.lww.com/co-anesthesiology/Abstract/2020/12000/Update_on_cannabis_and_cannabinoids_for_cancer.19.aspx

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid Receptor Subtype 2 (CB2R) in a Multitarget Approach: Perspective of an Innovative Strategy in Cancer and Neurodegeneration

 Go to Volume 0, Issue 0“The cannabinoid receptor subtype 2 (CB2R) represents an interesting and new therapeutic target for its involvement in the first steps of neurodegeneration as well as in cancer onset and progression.

Several studies, focused on different types of tumors, report a promising anticancer activity induced by CB2R agonists due to their ability to reduce inflammation and cell proliferation. Moreover, in neuroinflammation, the stimulation of CB2R, overexpressed in microglial cells, exerts beneficial effects in neurodegenerative disorders.

With the aim to overcome current treatment limitations, new drugs can be developed by specifically modulating, together with CB2R, other targets involved in such multifactorial disorders.

Building on successful case studies of already developed multitarget strategies involving CB2R, in this Perspective we aim at prompting the scientific community to consider new promising target associations involving HDACs (histone deacetylases) and σ receptors by employing modern approaches based on molecular hybridization, computational polypharmacology, and machine learning algorithms.”

https://pubmed.ncbi.nlm.nih.gov/33094613/

https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c01357

Abstract Image

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Activation of Cannabinoid Type-2 Receptor with JWH-133 Protects Uterine Ischemia/Reperfusion-Induced Damage

 Pharmacology - Home - Karger Publishers“Uterus transplantation is a complex surgical procedure. Uterine ischemia/reperfusion (IR) damage occurring in this process may cause loss of function in the uterus. Cell damage must be prevented for a healthy uterine function and successful transplantation.

Cannabinoids, with their increasing clinical use, are substances with strong anti-inflammatory and antioxidative effects and have a role in immune system regulation. However, their efficacy in uterine IR damage is still unknown.

This study provides information on the potential applications cannabinoids agonist JWH-133 in uterine IR damage and, hence, in the transplant process.

Results: In the uterine IR group, NF-κB expression and MDA levels were detected at high levels. Histopathological examinations and TUNEL staining revealed extensive cell damage. On the other hand, in groups treated with JWH-133, dose-dependent NF-κB expression and MDA levels decreased (p < 0.05). Depending on the dose, the rate of surviving cells increased in TUNEL staining results.

Conclusion: The results showed that JWH-133 was effective in reducing uterine IR damage. Cannabinoids may be a new alternative that may be used in the transplantation process in the future.”

https://pubmed.ncbi.nlm.nih.gov/33105141/

https://www.karger.com/Article/Abstract/511457

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis use and work-related injuries: a cross-sectional analysis

Occupational Medicine“The purpose of this study was to examine the relationship between work-related injury and cannabis use in the past year.

Results: Among the 136 536 working participants, 2577 (2%) had a work-related injury in the last 12 months. Of these 2577 who had a work-related injury, 4% also reported being a cannabis user in the same period. We found no association between past-year cannabis use and work-related injury (odds ratio for work injury among users 0.81, 95% confidence interval 0.66-0.99). The association was unchanged in the subgroup analysis limited to high injury risk occupational groups.

Conclusions: We found no evidence that cannabis users experienced higher rates of work-related injuries. While awaiting prospective studies, occupational medicine practitioners should take a risk-based approach to drafting workplace cannabis policies.”

https://pubmed.ncbi.nlm.nih.gov/33108459/

https://academic.oup.com/occmed/advance-article-abstract/doi/10.1093/occmed/kqaa175/5941608?redirectedFrom=fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol interactions with voltage-gated sodium channels

eLife logo “Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for treatment of neurological diseases.

Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations.

This study used high resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels.

CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD.

In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels.”

https://pubmed.ncbi.nlm.nih.gov/33089780/

https://elifesciences.org/articles/58593

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Involvement of dopamine receptor in the actions of non-psychoactive phytocannabinoids

Biochemical and Biophysical Research Communications “These data support the notion that CBD and CBDV act as functional partial agonists on dopamine D2-like receptors in vivo.

The discovery that dopamine receptor is involved in the actions of phytocannabinoids moves a significant step toward our understanding of the mechanisms for medical uses of cannabis in the treatment of neurological and psychiatric disorders.”

https://pubmed.ncbi.nlm.nih.gov/33097185/

https://www.sciencedirect.com/science/article/abs/pii/S0006291X20319306?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Attenuation of Oxidative Stress by Cannabinoids and Cannabis Extracts in Differentiated Neuronal Cells

pharmaceuticals-logo“In this proof-of-concept study, the antioxidant activity of phytocannabinoids, namely cannabidiol (CBD) and Δ9- tetrahydrocannabinol (THC), were investigated using an in vitro system of differentiated human neuronal SY-SH5Y cells.

We showed that THC had a high potency to combat oxidative stress in both in vitro models, while CBD did not show a remarkable antioxidant activity. The cannabis extracts also exhibited a significant antioxidant activity, which depended on the ratio of the THC and CBD. However, our results did not suggest any antagonist effect of the CBD on the antioxidant activity of THC. The effect of cannabis extracts on the cell viability of differentiated human neuronal SY-SH5Y cells was also investigated, which emphasized the differences between the bioactivity of cannabis extracts due to their composition.

Our preliminary results demonstrated that cannabis extracts and phytocannabinoids have a promising potential as antioxidants, which can be further investigated to develop novel pharmaceuticals targeting oxidative stress therapy.”

https://pubmed.ncbi.nlm.nih.gov/33105840/

https://www.mdpi.com/1424-8247/13/11/328

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous