The Role of CB2 Receptor in the Recovery of Mice after Traumatic Brain Injury.

 Journal of Neurotrauma cover image“Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG that binds to both CB1 and CB2 receptors 1 hr after traumatic brain injury in mice attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors, with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats, subjected to closed head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of TNF-alpha production, increased synaptogenesis and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.”

https://www.ncbi.nlm.nih.gov/pubmed/30489198

https://www.liebertpub.com/doi/10.1089/neu.2018.6063

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage.

Neuropharmacology

“Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns.

Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy.

This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection.

RESULTS:

HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated.

CONCLUSIONS:

cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.”

https://www.ncbi.nlm.nih.gov/pubmed/30468796

https://www.sciencedirect.com/science/article/pii/S0028390818308554?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System and Oligodendrocytes in Health and Disease.

 Image result for frontiers in neuroscience“Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.”

https://www.ncbi.nlm.nih.gov/pubmed/30416422

https://www.frontiersin.org/articles/10.3389/fnins.2018.00733/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Therapeutics and the Future of Neurology.

Image result for frontiers in integrative neuroscience

“Neurological therapeutics have been hampered by its inability to advance beyond symptomatic treatment of neurodegenerative disorders into the realm of actual palliation, arrest or reversal of the attendant pathological processes.

While cannabis-based medicines have demonstrated safety, efficacy and consistency sufficient for regulatory approval in spasticity in multiple sclerosis (MS), and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges remain.

This review will examine the intriguing promise that recent discoveries regarding cannabis-based medicines offer to neurological therapeutics by incorporating the neutral phytocannabinoids tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), and cannabis terpenoids in the putative treatment of five syndromes, currently labeled recalcitrant to therapeutic success, and wherein improved pharmacological intervention is required: intractable epilepsy, brain tumors, Parkinson disease (PD), Alzheimer disease (AD) and traumatic brain injury (TBI)/chronic traumatic encephalopathy (CTE).

Current basic science and clinical investigations support the safety and efficacy of such interventions in treatment of these currently intractable conditions, that in some cases share pathological processes, and the plausibility of interventions that harness endocannabinoid mechanisms, whether mediated via direct activity on CB1 and CB2 (tetrahydrocannabinol, THC, caryophyllene), peroxisome proliferator-activated receptor-gamma (PPARγ; THCA), 5-HT1A (CBD, CBDA) or even nutritional approaches utilizing prebiotics and probiotics.

The inherent polypharmaceutical properties of cannabis botanicals offer distinct advantages over the current single-target pharmaceutical model and portend to revolutionize neurological treatment into a new reality of effective interventional and even preventative treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/30405366

https://www.frontiersin.org/articles/10.3389/fnint.2018.00051/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neural stem cell lineage-specific cannabinoid type-1 receptor regulates neurogenesis and plasticity in the adult mouse hippocampus.

Cerebral Cortex

“Neural stem cells (NSCs) in the adult mouse hippocampus occur in a specific neurogenic niche, where a multitude of extracellular signaling molecules converges to regulate NSC proliferation as well as fate and functional integration. However, the underlying mechanisms how NSCs react to extrinsic signals and convert them to intracellular responses still remains elusive.

NSCs contain a functional endocannabinoid system, including the cannabinoid type-1 receptor (CB1).

To decipher whether CB1 regulates adult neurogenesis directly or indirectly in vivo, we performed NSC-specific conditional inactivation of CB1 by using triple-transgenic mice.

These results demonstrate that CB1 expressed in NSCs and their progeny controls neurogenesis in adult mice to regulate the NSC stem cell pool, dendritic morphology, activity-dependent plasticity, and behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/30307491

https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhy258/5126794

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Understanding the endocannabinoid system as a modulator of the trigeminal pain response to concussion.

“Post-traumatic headache is the most common symptom of postconcussion syndrome and becomes a chronic neurological disorder in a substantial proportion of patients.

This review provides a brief overview of the epidemiology of postconcussion headache, research models used to study this disorder, as well as the proposed mechanisms.

An objective of this review is to enhance the understanding of how the endogenous cannabinoid system is essential for maintaining the balance of the CNS and regulating inflammation after injury, and in turn making the endocannabinoid system a potential modulator of the trigeminal response to concussion.

The review describes the role of endocannabinoid modulation of pain and the potential for use of phytocannabinoids to treat pain, migraine and concussion.”

https://www.ncbi.nlm.nih.gov/pubmed/30202590

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Chronic High Doses of Cannabinoids Promote Hippocampal Neurogenesis

Fake Banner

“Hippocampal neurogenesis is suppressed following chronic administration of the major drugs of abuse (including opiates, alcohol, nicotine, and cocaine). However, CB1-knockout mice display significantly decreased hippocampal neurogenesis, suggesting that CB1 receptors activated by endogenous, plant-derived, or synthetic cannabinoids may promote hippocampal neurogenesis.

Cannabinoids can regulate the proliferation of hippocampal NS/PCs by acting on CB1 receptors. They found that both the synthetic cannabinoid HU210 and the endocannabinoid anandamide profoundly promote embryonic hippocampal NS/PC proliferation. Chronic, but not acute, HU210 significantly increases the number of newborn hippocampal neurons in adult rats by promoting NS/PC proliferation.

A significant increase was observed in the hipoppocampal newborn neurons of mice following twice-daily HU210 injection for 10 days.

This suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic  administration.”

Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects.” https://www.jci.org/articles/view/25509

http://www.science20.com/science_why_not/blog/chronic_high_doses_cannabinoids_promote_hippocampal_neurogenesis

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis.

Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis.“Cannabinoids, acting through the CB1 cannabinoid receptor (CB1R), protect the brain against ischemia and related forms of injury.

This may involve inhibiting the neurotoxicity of endogenous excitatory amino acids and downstream effectors, such as nitric oxide (NO).

Cannabinoids also stimulate neurogenesis in the adult brain through activation of CB1R.

Because NO has been implicated in neurogenesis, we investigated whether cannabinoid-induced neurogenesis, like cannabinoid neuroprotection, might be mediated through alterations in NO production.” https://aggregator.leafscience.org/role-for-neuronal-nitric-oxide-synthase-in-cannabinoid-induced-neurogenesis/

“Nitric oxide negatively regulates mammalian adult neurogenesis.”  http://www.pnas.org/content/100/16/9566.long

“Thus, cannabinoids appear to stimulate adult neurogenesis by opposing the antineurogenic effect of NO.” http://jpet.aspetjournals.org/content/jpet/319/1/150.full.pdf

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid system and cannabinoids in neurogenesis – new opportunities for neurological treatment? Reports from experimental studies.

“Neurogenesis is one of the most important phenomenona affecting human life. This process consists of proliferation, migration and differentiation of neuroblasts and synaptic integrations of newborn neurons.
Proliferation of new cells continues into old age, also in humans, although the most extensive process of cell formation occurs during the prenatal period. It is possible to distinguish two regions in the brain responsible for neurogenesis: the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ). Hippocampal neurogenesis is very sensitive to various physiological and pathological stimuli.
The functional integration of the newly-born dentate granule cells into hippocampal circuitry, and their ability to mediate long-term potentiation in DG, has led to the hypothesis that neurogenesis in the adult brain may play a key role in learning and memory function, as well as cognitive dysfunction in some diseases.
Brain disorders, such as neurodegenerative diseases or traumatic brain injuries, significantly affect migration, proliferation and differentiation of neural cells. In searching for the best neurological drugs protecting neuronal cells, stimulating neurogenesis, while also developing no side-effects, endocannabinoids proved to be a strong group of substances having many beneficial properties.
Therefore, the latest data is reviewed of the various experimental studies concerning the analysis of the most commonly studied cannabinoids and their impact on neurogenesis.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous