Topical cannabidiol (CBD) in skin pathology – A comprehensive review and prospects for new therapeutic opportunities

“Humans have utilised cannabis products in various forms throughout the recorded history. To date, more than 500 biologically active components have been identified in the plants of the Cannabis genus, amongst which more than 100 were classified as phytocannabinoids (exocannabinoids).

The plant genus Cannabis is a member of the plant family Cannabaceae, and there are three primary cannabis species which vary in their biochemical constituents: Cannabis sativa, Cannabis indica and Cannabis ruderalis. There has been a growing level of interest in research on the topical usage of a cannabis-based extract as a safer and more effective alternative to the usage of topical corticosteroids in treating some dermatoses.

Together with the discovery of the cannabinoid receptors on the skin, it has been further illustrated that topical cannabis has anti-inflammatory, anti-itching, analgesics, wound healing and anti-proliferative effects on the skin.”

https://pubmed.ncbi.nlm.nih.gov/35695447/

https://safpj.co.za/index.php/safpj/article/view/5493

Cannabis sativa and Skin Health: Dissecting the Role of Phytocannabinoids

“The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020.

Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways.

Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.”

https://pubmed.ncbi.nlm.nih.gov/33851375/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-1420-5780


Therapeutic application of cannabidiol on UVA and UVB irradiated rat skin. A proteomic study

Journal of Pharmaceutical and Biomedical Analysis “UV phototherapy used in chronic skin diseases causes redox imbalance and pro-inflammatory reactions, especially in the case of unchanged skin cells.

To prevent the harmful effects of UV radiation, cannabidiol (CBD) has been used, which has antioxidant and anti-inflammatory properties. Therefore, the aim of this study was to evaluate the effect of CBD on the metabolism of skin keratinocytes in nude rats exposed to UVA/UVB radiation using a proteomic approach.

The results obtained with SDS-PAGE/nanoHPLC/QexactiveOrbiTrap show that exposure of rat’s skin to UVA/UVB radiation, as well as the action of CBD, significantly modified the expression of proteins involved in inflammation, redox balance and apoptosis.

UVA/UVB radiation significantly increased the expression and biological effectiveness of the nuclear factor associated with erythroid factor 2 (Nrf2) and cytoprotective proteins being products of its transcriptional activity, including superoxide dismutase (Cu,Zn-SOD) and the inflammatory response (nuclear receptor coactivator-3 and paralemmin-3), while CBD treatment counteracted and partially eliminated these changes.

Moreover, cannabidiol reversed changes in the UV-induced apoptotic pathways by modifying anti-apoptotic and pro-apoptotic factors (apoptosis regulator Bcl-2 and transforming growth factor-β).

The results show that CBD maintains keratinocyte proteostasis and therefore could be suggested as a protective measure in the prevention of UV-induced metabolic changes in epidermal keratinocytes.”

https://pubmed.ncbi.nlm.nih.gov/33086172/

“In summary, UVA and UVB radiation affect the proteomic profile of keratinocytes of healthy rat skin in different ways. Both types of radiation change the level of proteins involved in the regulation of cellular redox balance, inflammation, and apoptosis. In contrast, topical application of CBD to rat skin, when exposed to UV radiation, helps normalize the expression of keratinocyte proteins that are metabolically relevant by modeling their biosynthesis and degradation. Thus, CBD can maintain the proteostasis of keratinocytes. Because UV therapy is a part of the treatment of skin diseases, e.g. psoriasis, the use of CBD on unchanged skin may be suggested as a protective factor to reduce the metabolic changes caused by UV radiation in unchanged keratinocytes. This suggestion is particularly important when the beneficial effect of cannabidiol on psoriasis-induced skin lesions has recently also been confirmed.”

https://www.sciencedirect.com/science/article/pii/S0731708520315429?via%3Dihub

Novel cannabidiol sunscreen protects keratinocytes and melanocytes against ultraviolet B radiation

“Cannabidiol (CBD), a natural occurring phytocannabinoid, is used extensively in consumer products ranging from foods to shampoos, topical oils and lotions.

Several studies demonstrated the anti-inflammatory and antioxidative properties of cannabidiol. Nevertheless, the role of cannabidiol use in sunscreens is largely unknown as no studies on its effect on keratinocytes or melanocytes exist. As such, we aimed to explore the effect of CBD on keratinocyte and melanocyte viability following ultraviolet B (UVB) irradiation.

CBD exhibited a dose-dependent protective effect on both keratinocytes and melanocyte viability. Further, since CBD does not demonstrate absorption in the UVB spectra, we speculate that the protective effect is due to reduction in reactive oxygen species.

To our knowledge, this is the first study demonstrating the protective effect of CBD on keratinocytes and melanocytes irradiated with UVB.”

https://pubmed.ncbi.nlm.nih.gov/32964699/

https://onlinelibrary.wiley.com/doi/10.1111/jocd.13693

Cannabidiol Modifies the Formation of NETs in Neutrophils of Psoriatic Patients

ijms-logo“Psoriasis is associated with increased production of reactive oxygen species which leads to oxidative stress.

As antioxidants can provide protection, the aim of this study was to evaluate the effects of cannabidiol (CBD) on neutrophil extracellular trap (NET) formation in psoriatic and healthy neutrophils.

These results suggest that psoriatic patients neutrophils are at a higher risk of NETosis both in vitro and in vivo.

CBD reduces NETosis, mainly in psoriatic neutrophils, possibly due to its antioxidant properties.

The anti-NET properties of CBD suggest the positive effect of CBD in the treatment of autoimmune diseases.”

https://pubmed.ncbi.nlm.nih.gov/32947961/

https://www.mdpi.com/1422-0067/21/18/6795

Cannabidiol-Mediated Changes to the Phospholipid Profile of UVB-Irradiated Keratinocytes from Psoriatic Patients

ijms-logo“UVB phototherapy is treatment for psoriasis, which increases phospholipid oxidative modifications in the cell membrane of the skin. Therefore, we carried out lipidomic analysis on the keratinocytes of healthy individuals and patients with psoriasis irradiated with UVB and treated with cannabidiol (CBD), phytocannabinoid with antioxidant and anti-inflammatory properties.

Our results showed that, in psoriatic keratinocytes phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), and ether-linked phosphoethanolamine (PEo), were downregulated, while SM (d41:2) was upregulated. These changes were accompanied by an increase in negative zeta potential, which indicates translocation of PS to the outer layer of the membrane.

CBD treatment of psoriatic keratinocytes led to downregulation of PC, PS, and upregulation of certain PEo and an SM species, SM (d42:2), and the zeta potential. However, UVB irradiation of psoriatic keratinocytes resulted in upregulation of PC, PC plasmalogens (PCp), PEo, and a decrease in the negative zeta potential. The exposure of UVB-irradiated cells to CBD led to a decrease in the level of SM (d42:2).

Our results suggest that CBD induces pro-apoptotic mechanisms in psoriatic keratinocytes while simultaneously improving the antioxidant properties and preventing the loss of transepidermal water of keratinocytes of patients irradiated with UVB. Thus, CBD has potential therapeutic value in the treatment of psoriasis.”

https://pubmed.ncbi.nlm.nih.gov/32916896/

https://www.mdpi.com/1422-0067/21/18/6592

Cannabidiol Effects on Phospholipid Metabolism in Keratinocytes from Patients with Psoriasis Vulgaris

biomolecules-logo“Psoriasis is a chronic inflammatory skin disease characterized by dysregulated keratinocyte differentiation, but oxidative stress also plays an important role in the pathogenesis of this disease.

Here, we examined the effect of cannabidiol (CBD), a phytocannabinoid with antioxidant and anti-inflammatory properties, on the redox balance and phospholipid metabolism in UVA/UVB-irradiated keratinocytes isolated from the skin of psoriatic patients or healthy volunteers.

We conclude that CBD partially reduces oxidative stress in the keratinocytes of healthy individuals, while showing a tendency to increase the oxidative and inflammatory state in the keratinocytes of patients with psoriasis, especially following UV-irradiation.”

https://www.mdpi.com/2218-273X/10/3/367

Mechanisms of Cannabinoids and Potential Applicability to Skin Diseases.

SpringerLink“The legalisation of cannabis in a growing number of jurisdictions has led to increasing interest in its potential therapeutic effects in a range of disorders, including cutaneous conditions. Cannabinoids have been used as natural medicines for centuries; however, their biological activity in the skin is a new area of study.

Recent data suggest that cannabinoids are involved in neuro-immuno-endocrine modulation of skin functioning, yet their effect on the features of dermatologic conditions is unclear. This article sought to review the mechanisms by which cannabinoids regulate skin functioning through the lens of relevance to treatment of dermatologic diseases looking at the effects of cannabinoids on a range of cellular activities and dermatologic conditions both in vitro and in vivo.

We identified studies demonstrating an inhibitory effect of cannabinoids on skin inflammation, proliferation, fibrosis, pain, and itch-biological mechanisms involved in the pathogenesis of many dermatologic conditions.

Cannabinoids have the potential to expand the therapeutic repertoire of a wide spectrum of skin disorders. Given their widespread unregulated use by the general public, basic and clinical studies are required to elucidate the effectiveness and long-term effects of topical and systemic cannabinoids in cutaneous disorders.”

“The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders.” https://www.ncbi.nlm.nih.gov/pubmed/30138623

Cannabinoids in the Pathophysiology of Skin Inflammation.

molecules-logo“Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component.

This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer.

In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances.

Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.”

https://www.ncbi.nlm.nih.gov/pubmed/32033005

https://www.mdpi.com/1420-3049/25/3/652

“Cannabinoid Signaling in the Skin: Therapeutic Potential of the “C(ut)annabinoid” System” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429381/

Cannabinoids for the Treatment of Chronic Pruritus: A Review.

Journal of the American Academy of Dermatology Home“Medical marijuana is becoming widely available to patients in the U.S. and with recreational marijuana now legalized in many states, patient interest is on the rise.

The endocannabinoid system plays an important role in skin homeostasis in addition to broader effects on neurogenic responses such as pruritus and nociception, inflammation, and immune reactions. There are numerous studies of in vitro and animal models that provide insight into the possible mechanisms of cannabinoid modulation on pruritus, with the most evidence behind neuronal modulation of both peripheral itch fibers and centrally-acting cannabinoid receptors.

In addition, human studies, while limited due to differences in cannabinoids used, disease models, and delivery method, have consistently shown significant reductions in both scratching and symptomatology in chronic pruritus. Clinical studies that have shown reduction in pruritus in several dermatologic (atopic dermatitis, psoriasis, asteatotic eczema, prurigo nodularis, allergic contact dermatitis) and systemic (uremic pruritus, cholestatic pruritus) diseases.

These preliminary human studies warrant controlled trials to confirm the benefit of cannabinoids for treatment of pruritus and to standardize treatment regimens and indications. In patients who have refractory chronic pruritus after standard therapies, cannabinoid formulations may be considered as an adjuvant therapy where it is legal.”

https://www.ncbi.nlm.nih.gov/pubmed/31987788

https://www.jaad.org/article/S0190-9622(20)30120-1/pdf