Purified cannabidiol as add-on therapy in children with treatment-resistant infantile epileptic spasms syndrome

pubmed logo

“Objective: The aim of this study was to assess efficacy, safety, and tolerability of highly purified cannabidiol oil (CBD) as add-on therapy for the treatment of a series of patients with infantile epileptic spasms syndrome (IESS) who were resistant to antiseizure medications and ketogenic dietary therapy.

Material and methods: We conducted a retrospective analysis of the medical records of 28 infants with treatment-resistant IESS aged 6 to 21 months who received highly purified CBD between July 2021 and June 2023. Data were collected on neurological examinations, EEG, Video-EEG and polygraphic recordings, imaging studies, laboratory testing, and seizure frequency, type, and duration, and adverse effects. As the primary outcome, a reduction of frequency of epileptic spasms (ES) was assessed. ES freedom was considered after a minimal time of 1 month without ES.

Results: Sixteen male and 12 female patients, aged 6-21 months, who received CBD for treatment-resistant IESS were included. The etiology was structural in 10, Down syndrome in seven, genetic in nine, and unknown in two. Initial CBD dose was 2 mg/kg/day, which was uptitrated to a median dose of 25 mg/kg/day (range, 2-50). Prior to CBD initiation, patients had a median of 69 ES in clusters per day (range, 41-75) and of 10 focal seizures per week (range, 7-13). After a mean and median follow-up of 15 and 12.5 months (range, 6-26 months), seven patients were ES free and 12 had a >50 % ES reduction. Five of seven patients (71 %) with Down syndrome and 3/5 (60 %) with cerebral palsy responded well. Adverse effects were mild. EEG improvements correlated with ES reductions.

Conclusion: In this study evaluating the use of CBD in children with IESS, 19/28 (67.8 %) had a more than 50 % ES reduction with good tolerability.”



Efficacy and safety of medical cannabinoids in children with cerebral palsy: a systematic review

pubmed logo

“Introduction: The increasing popularity of cannabinoids for treating numerous neurological disorders has been reported in various countries. Although it reduces tetrahydrocannabinol psychoactivity, it helps patients tolerate higher doses and complements the anti-spasmodic effects of tetrahydrocannabinol. One of the most important potential of cannabinoids are related to its potential to help children with cerebral palsy, a contributor of lifelong disability. Therefore, this systematic review aimed to assess the efficacy and safety of medical cannabinoids in children with cerebral palsy.

Methods: This review adhered to The Preferred Reporting Items for Systematic Reviews and Meta-analysis 2020 guidelines. Seven databases, namely, Scopus, PubMed, EBSCO Host, ProQuest, Google Scholar, Semantic Scholar, and JSTOR, were used to identify relevant studies. Studies examining pediatric patients with cerebral palsy and reporting the efficacy and safety of medical cannabinoids through clinical trials, observational cross-sectional studies, or cohort designs were included. The outcomes of the studies included the efficacy of medical cannabinoids administered for spasticity, motor components, pain control, sleep difficulties, adverse effects, and seizure control.

Results: Of 803 identified articles, only three met the inclusion criteria for data synthesis. One study exhibited a moderate risk-of-bias. A total of 133 respondents, mainly from Europe, were investigated. Overall effectiveness and safety were considered good. However, the results are inconsistent, especially regarding spasticity treatment variables.

Conclusion: The anti-spasticity, anti-inflammatory, and anti-seizure properties of cannabinoids might be beneficial for patients with cerebral palsy, although their effectiveness has not been widely studied. Further studies with larger sample sizes and various ethnicities are warranted.”



Cannabidiol Use Patterns and Efficacy for Children Who Have Cerebral Palsy

pubmed logo

“Cannabidiol (CBD)-containing supplements are used by children with cerebral palsy (CP), but the prevalence and efficacy of their use have not been studied. We sought to describe CBD use patterns and perceived efficacy in the pediatric population with CP, evaluating any association between CBD use and health-related quality of life. Patients with CP were prospectively enrolled, and caregivers were offered the Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD) Questionnaire and a survey assessing CBD use. Of 119 participants, 20 (16.8%) endorsed CBD use (CBD+) and 99 (83.2%) denied it (CBD-). Participants in the CBD+ group had worse functional status (85% Gross Motor Function Classification System level IV-V for CBD+ vs 37.4% for CBD-, P<.001) and lower health-related quality of life (mean CPCHILD score of 49.3 for CBD+ vs 62.2 for CBD-, P=.001). Spasticity was the rationale most cited for CBD use (29%), followed by pain and anxiety (both 22.6%). CBD was perceived to be most effective for improving emotional health, spasticity, and pain. Fifty percent of the patients in the CBD+ group underwent surgery in the previous 2 years and most endorsed a general benefit in the postoperative setting. The most common side effects noted were fatigue and increased appetite (both 12%). Most participants endorsed no side effects (60%). CBD may serve as a useful adjunct for some children with CP, especially those with worse disease severity. Caregivers perceive CBD as offering some benefits, particularly in the domains of emotional health, spasticity, and pain. We found no evidence of severe adverse events in our small cohort.”



The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”




“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”


Cannabidiol Administration Prevents Hypoxia-Ischemia-Induced Hypomyelination in Newborn Rats.

Image result for frontiers in pharmacology“Neonatal hypoxia-ischemia (HI) is a risk factor for myelination disturbances, a key factor for cerebral palsy.

Cannabidiol (CBD) protects neurons and glial cells after HI insult in newborn animals.

We hereby aimed to study CBD’s effects on long-lasting HI-induced myelination deficits in newborn rats.

In conclusion, HI injury in newborn rats resulted in long-lasting myelination disturbance, associated with functional impairment. CBD treatment preserved function and myelination, likely as a part of a general neuroprotective effect.”


“In conclusion, our study confirms that a HI insult in rats at a brain developmental stage equivalent to term infants leads to long-lasting myelination disturbance which is directly related to long-term functional disturbances. The administration of CBD single dose after the neonatal HI insult protects the maturational process of OL cells, as well as the mOL function and relationship with axons, thus, preserving normal myelination and restoring neurobehavioral function. Those results open exciting perspectives regarding a possible role for CBD in NHIE and other demyelinating pediatric conditions.”


Treatment of human spasticity with delta 9-tetrahydrocannabinol.

Image result for J Clin Pharmacol.

“Spasticity is a common neurologic condition in patients with multiple sclerosis, stroke, cerebral palsy or an injured spinal cord. Animal studies suggest that THC has an inhibitory effect on polysynaptic reflexes.

Some spastic patients claim improvement after inhaling cannabis. We tested muscle tone, reflexes, strength and performed EMGs before and after double-blinded oral administration of either 10 or 5 mg THC or placebo.

10 mg THC significantly reduced spasticity by clinical measurement (P less than 0.01).

Responses varied, but benefit was seen in three of three patients with “tonic spasms.””

Medical Marijuana Helps Kids With Cerebral Palsy, Israeli Study Finds

Medical marijuana plants (illustrative)

“Medical marijuana significantly improved the condition of children suffering from cerebral palsy, a study by Wolfson Medical Center near Tel Aviv has found. According to the interim findings, treatment with cannabis oil reduced the disorder’s symptoms and improved the children’s motor skills. It also improved the kids’ sleep quality, bowel movements and general mood.

“The THC’s effect is especially relevant to motor function, whether it’s Parkinson’s disease or other motor symptoms,” says Bar-Lev Schleider. “But the THC is also responsible for the psycho-active effect, so we picked a variety that also has a lot of CBD, which moderates the euphoric effect.”
One group of children was treated with oil with a 1:6 ratio of THC to CBD, while for another group the ratio was 1:20.
“According to the interim findings both oils are effective,” says Bar-Lev Schleider.”

Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism.

“We examined the neuroprotective mechanism of cannabidiol, non-psychoactive component of marijuana, on the infarction in a 4 h mouse middle cerebral artery (MCA) occlusion model in comparison with Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

Both pre- and post-ischemic treatment with cannabidiol resulted in potent and long-lasting neuroprotection, whereas only pre-ischemic treatment with Delta(9)-THC reduced the infarction.

Unlike Delta(9)-THC, cannabidiol did not affect the excess release of glutamate in the cortex after occlusion.

Cannabidiol suppressed the decrease in cerebral blood flow by the failure of cerebral microcirculation after reperfusion and inhibited MPO activity in neutrophils.

Furthermore, the number of MPO-immunopositive cells was reduced in the ipsilateral hemisphere in cannabidiol-treated group.

Cannabidiol provides potent and long-lasting neuroprotection through an anti-inflammatory CB(1) receptor-independent mechanism, suggesting that cannabidiol will have a palliative action and open new therapeutic possibilities for treating cerebrovascular disorders.”


ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”


Cannabinoid mouth spray brought help to a severely spastic young man.

“Cannabinoid was licensed in 2012 for the treatment of spasticity associated with multiple sclerosis in Finland. Spasticity is one of the main symptoms in cerebral palsies and a risk factor of multiple painful anomalies of the skeletal network. We describe a 28-year-old man with severe cerebral palsy, whose quality of life improved and the need for help decreased by using two daily mouth sprays of cannabinoid.”