Risk of Motor Vehicle Collisions and Culpability among Older Drivers Using Cannabis: A Meta-Analysis


“Limited studies have investigated the effects of cannabis use on driving among older adults, who represent the fastest growing segment of drivers globally. We conducted a systematic review and meta-analysis to evaluate the effects of delta-9-tetrahydrocannabinol (THC) exposure on risks of (1) motor vehicle collisions (MVC) and (2) culpability for MVCs among adults 50 years and older. Three reviewers screened 7022 studies identified through MEDLINE, EMBASE, CENTRAL, and PsycINFO. Odds Ratios (OR) were calculated using the Mantel-Haenszel method in Review Manager 5.4.1. Heterogeneity was assessed using I2. The National Heart, Lung, and Blood Institute tool was used to assess the quality of each study. Seven cross-sectional studies were included. Three studies evaluated culpability while four evaluated MVC.

The pooled risk of MVC was not significantly different between THC-positive and THC-negative older drivers (OR, 95% CI 1.15 [0.40, 3.31]; I2 = 72%). In culpability studies, THC exposure was not significantly associated with an increased risk of being culpable for MVC among adults over the age of 50 (OR, 95% CI 1.24 [0.95, 1.61]; I2 = 0%). Inspection of funnel plots did not indicate publication bias.

Our review found that THC exposure was not associated with MVC involvement nor with culpability for MVCs.”



A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities


“For more than a century, Cannabis was considered a narcotic and has been banned by lawmakers all over the world. In recent years, interest in this plant has increased due to its therapeutic potential, in addition to a very interesting chemical composition, characterized by the presence of an atypical family of molecules known as phytocannabinoids. With this emerging interest, it is very important to take stock of what research has been conducted so far on the chemistry and biology of Cannabis sativa.

The aim of this review is to describe the traditional uses, chemical composition and biological activities of different parts of this plant, as well as the molecular docking studies. Information was collected from electronic databases, namely SciFinder, ScienceDirect, PubMed and Web of Science. 

Cannabis is mainly popular for its recreational use, but it is also traditionally used as remedy for the treatment of several diseases, including diabetes, digestive, circulatory, genital, nervous, urinary, skin and respiratory diseases.

These biological proprieties are mainly due to the presence of bioactive metabolites represented by more than 550 different molecules. Molecular docking simulations proved the presence of affinities between Cannabis compounds and several enzymes responsible for anti-inflammatory, antidiabetic, antiepileptic and anticancer activities.

Several biological activities have been evaluated on the metabolites of Cannabis sativa, and these works have shown the presence of antioxidant, antibacterial, anticoagulant, antifungal, anti-aflatoxigenic, insecticidal, anti-inflammatory, anticancer, neuroprotective and dermocosmetic activities. This paper presents the up-to-date reported investigations and opens many reflections and further research perspectives.”


“At present, more than 545 phytochemicals have been described in the different parts of the Cannabis plant. The most represented metabolite class is the phytocannabinoids and they exhibit enormous structural diversity and bioactivities. Cannabis sativa is found in a wide variety of forms and environments on all continents and its pharmacological properties seem to go far beyond psychotic effects, with the ability to address needs such as the treatment and relief of many symptoms and diseases.”


Special Issue: Therapeutic Potential for Cannabis and Cannabinoids


“The number of patients reporting the use of cannabis for medical purposes, whether through state-regulated medical marijuana programs or through over-the-counter hemp extracts, continues to grow. The growth in medicinal use of cannabis has in many ways surpassed the scientific data on the benefits and hazards of cannabis, and the scientific community has largely been left playing catch-up. Since 1996, when California became the first jurisdiction to legalize medical cannabis, the number of states following suit has grown and is currently at 37, while nearly 50 countries have legalized medical cannabis (and even more have decriminalized the plant) including Canada, Austria, Uruguay, Australia, South Korea, and Lesotho.

Cannabis sp. produces a number of phytochemicals with potential medical benefits including terpenes, flavonoids, and a unique class of molecules called cannabinoids, of which Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the two most studied. Amazingly, the plant produces over 100 different cannabinoids with different potential therapeutic targets and activities, and these remain understudied.

The therapeutic benefits of cannabinoids are due, in large part, to the endocannabinoid system that exists in the human body, in addition to the ability of cannabinoids to interact and signal through a large number of disparate receptor molecules.”

“Cannabis is a complicated plant that produces over 100 cannabinoids in addition to terpenes and flavonoids. Adding to the complexity of trying to address the mechanism of action for cannabis is the fact that the cannabinoids that have been studied have been reported to exhibit activity at a number of different receptors.

This makes cannabinoids (and cannabis) a promiscuous drug. While typically viewed as a negative, promiscuous drugs do offer some advantages, most notably the ability to target different pathways of a disease with one medication.

The field of medical cannabis is growing rapidly, and as patients continue to use this plant to treat their conditions, there will remain a growing need for the scientific and medical communities to better understand how cannabis can impact the body.”


Role of Terpenophenolics in Modulating Inflammation and Apoptosis in Cardiovascular Diseases: A Review


“One in every three deaths worldwide is caused by cardiovascular diseases (CVDs), estimating a total of 17.9 million deaths annually. By 2030, it is expected that more than 24 million people will die from CVDs related complications. The most common CVDs are coronary heart disease, myocardial infarction, stroke, and hypertension.

A plethora of studies has shown inflammation causing both short-term and long-term damage to the tissues in many organ systems, including the cardiovascular system. In parallel to inflammation processes, it has been discovered that apoptosis, a mode of programmed cell death, may also contribute to CVD development due to the loss of cardiomyocytes.

Terpenophenolic compounds are comprised of terpenes and natural phenols as secondary metabolites by plants and are commonly found in the genus Humulus and Cannabis. A growing body of evidence has shown that terpenophenolic compounds exhibit protective properties against inflammation and apoptosis within the cardiovascular system.

This review highlights the current evidence elucidating the molecular actions of terpenophenolic compounds in protecting the cardiovascular system, i.e., bakuchiol, ferruginol, carnosic acid, carnosol, carvacrol, thymol and hinokitiol. The potential of these compounds is discussed as the new nutraceutical drugs that may help to decrease the burden of cardiovascular disorders.”


“In this review, we have summarised the evidence on the potential pharmacological activities of terpenophenolic compounds in regulating inflammation and apoptosis associated with CVDs. Treatment of various classes of terpenophenolic compounds has been shown effective in preventing and limiting the progression of heart failure. In addition, all terpenophenolics seem to be potent antioxidants, which are proven to upregulate the Nrf2 pathway and increase the endogenous antioxidant level.”


Combined non-psychoactive Cannabis components cannabidiol and β-caryophyllene reduce chronic pain via CB1 interaction in a rat spinal cord injury model

Lopiccolo & Chang in PLoS ONE – BU Linguistics

“The most frequently reported use of medical marijuana is for pain relief. However, its psychoactive component Δ9-tetrahydrocannabinol (THC) causes significant side effects. Cannabidiol (CBD) and β-caryophyllene (BCP), two other cannabis constituents, possess more benign side effect profiles and are also reported to reduce neuropathic and inflammatory pain. We evaluated the analgesic potential of CBD and BCP individually and in combination in a rat spinal cord injury (SCI) clip compression chronic pain model. Individually, both phytocannabinoids produced dose-dependent reduction in tactile and cold hypersensitivity in male and female rats with SCI. When co-administered at fixed ratios based on individual A50s, CBD and BCP produced enhanced dose-dependent reduction in allodynic responses with synergistic effects observed for cold hypersensitivity in both sexes and additive effects for tactile hypersensitivity in males. Antinociceptive effects of both individual and combined treatment were generally less robust in females than males. CBD:BCP co-administration also partially reduced morphine-seeking behavior in a conditioned place preference (CPP) test. Minimal cannabinoidergic side effects were observed with high doses of the combination. The antinociceptive effects of the CBD:BCP co-administration were not altered by either CB2 or μ-opioid receptor antagonist pretreatment but, were nearly completely blocked by CB1 antagonist AM251. Since neither CBD or BCP are thought to mediate antinociception via CB1 activity, these findings suggest a novel CB1 interactive mechanism between these two phytocannabinoids in the SCI pain state. Together, these findings suggest that CBD:BCP co-administration may provide a safe and effective treatment option for the management of chronic SCI pain.”


“In conclusion, the current findings indicate that the combination of readily accessible non-psychoactive cannabis components CBD oil and BCP may be particularly effective in reducing neuropathic pain resulting from spinal cord injury. In addition, cannabinoid-like side effects were minimal using this combination. Further, the observed decrease in opioid-seeking behavior suggest that this treatment may be useful as a supplemental therapeutic to reduce opioid needed for effective pain management. Together, these findings are supportive of the beneficial effects of combining cannabis components in the armamentarium for chronic pain management.”


Cannabidiol Recovers Dopaminergic Neuronal Damage Induced by Reserpine or α-synuclein in Caenorhabditis elegans


“Progressive neurodegenerative disorders such as Parkinson Disease (PD) lack curative or long-term treatments. At the same time, the increase of the worldwide elderly population and, consequently, the extension in the prevalence of age-related diseases have promoted research interest in neurodegenerative disorders. Caenorhabditis elegans is a free-living nematode widely used as an animal model in studies of human diseases.

Here we evaluated cannabidiol (CBD) as a possible neuroprotective compound in PD using the C. elegans models exposed to reserpine.

Our results demonstrated that CBD reversed the reserpine-induced locomotor alterations and this response was independent of the NPR-19 receptors, an orthologous receptor for central cannabinoid receptor type 1. Morphological alterations of cephalic sensilla (CEP) dopaminergic neurons indicated that CBD also protects neurons from reserpine-induced degeneration. That is, CBD attenuates the reserpine-induced increase of worms with shrunken soma and dendrites loss, increasing the number of worms with intact CEP neurons. Finally, we found that CBD also reduced ROS formation and α-syn protein accumulation in mutant worms.

Our findings collectively provide new evidence that CBD acts as neuroprotector in dopaminergic neurons, reducing neurotoxicity and α-syn accumulation highlighting its potential in the treatment of PD.”



Highly purified cannabidiol improves stability and postural tone in adult patients with Lennox-Gastaut Syndrome: a case series

“Lennox-Gastaut Syndrome (LGS) is a severe developmental epileptic encephalopathy associated with numerous neurological signs and symptoms. Altered postural tone and the need for a caregiver-assisted wheelchair are features characterising patients with LGS.

Highly purified cannabidiol (CBD) is a novel antiseizure medication recommended for seizure treatment, in combination with clobazam, in patients with LGS. Adding CBD to the previous antiseizure medication treatment helps reduce seizure frequency, specifically drop seizures, in patients with LGS in both clinical trials and real-world studies. However, no data about drug effects on postural tone, motor activity, gait and stability are available.

In this case series, three adult patients diagnosed with LGS were treated with CBD as an add-on. During the follow-up, a slight improvement in seizure frequency was observed. Unexpectedly, an amelioration in postural tone and stability, measured using the validated Gross Motor Function Classification System, was also detected.

Our case series suggests that CBD may help manage patients with LGS regarding seizure control and improve other aspects of the clinical spectrum of the disease, such as postural tone and stability. The mechanisms at the basis of this improvement may be related, other than seizure reduction, to the drug’s effect on the brain locomotor centres, as demonstrated in animal model studies.”



Cannabidiol as a Promising Therapeutic Option in IC/BPS: In Vitro Evaluation of Its Protective Effects against Inflammation and Oxidative Stress


“Several animal studies have described the potential effect of cannabidiol (CBD) in alleviating the symptoms of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic inflammatory disease of the urinary bladder. However, the effects of CBD, its mechanism of action, and modulation of downstream signaling pathways in urothelial cells, the main effector cells in IC/BPS, have not been fully elucidated yet. Here, we investigated the effect of CBD against inflammation and oxidative stress in an in vitro model of IC/BPS comprised of TNFα-stimulated human urothelial cells SV-HUC1. Our results show that CBD treatment of urothelial cells significantly decreased TNFα-upregulated mRNA and protein expression of IL1α, IL8, CXCL1, and CXCL10, as well as attenuated NFκB phosphorylation. In addition, CBD treatment also diminished TNFα-driven cellular reactive oxygen species generation (ROS), by increasing the expression of the redox-sensitive transcription factor Nrf2, the antioxidant enzymes superoxide dismutase 1 and 2, and hem oxygenase 1. CBD-mediated effects in urothelial cells may occur by the activation of the PPARγ receptor since inhibition of PPARγ resulted in significantly diminished anti-inflammatory and antioxidant effects of CBD. Our observations provide new insights into the therapeutic potential of CBD through modulation of PPARγ/Nrf2/NFκB signaling pathways, which could be further exploited in the treatment of IC/BPS.”



The antinociceptive activity and mechanism of action of cannabigerol

Biomedicine & Pharmacotherapy

“Cannabis has been used for centuries to treat pain.

The antinociceptive activity of tetrahydrocannabinol (THC) or cannabidiol (CBD) has been widely studied. However, the antinociceptive effects of other cannabis components, such as cannabichromene (CBC) and cannabigerol (CBG), have rarely been revealed. The antinociceptive mechanism of CBG is not yet clear, so we investigated the antinociceptive effect of CBG on different pain models, and explored the mechanism of action of CBG to exert antinociceptive effects.

In the current study, we compared the antinociceptive effects of CBC, CBD, and CBG on the carrageenan-induced inflammatory pain model in mice, and the results showed that CBG had a better antinociceptive effects through intraplantar administration. On this basis, we further investigated the antinociceptive effect of CBG on CIA-induced arthritis pain model and nerve pain model in mice, and found that CBG also relieved on both types of pain. Then, we explored the antinociceptive mechanism of CBG, which revealed that CBG can activate TRPV1 and desensitize it to block the transmission of pain signals. In addition, CBG can further activate CB2R, but not CB1R, to stimulate the release of β-endorphin, which greatly promotes the antinociceptive effect.

Finally, the safety test results showed that CBG had no irritating effect on the rabbits’ skin, and it did not induce significant biochemical and hematological changes in mice. Transdermal delivery results also indicated that CBG has certain transdermal properties. Overall, this study indicates that CBG is promising for developing a transdermal dosage for pain management.”


“Cannabigerol can exert antinociceptive effects on multiple pain models.”


Cannabidiol prevents chemotherapy-induced neuropathic pain by modulating spinal TLR4 via endocannabinoid system activation

Journal of Pharmacy and Pharmacology

“Objectives: This study aimed to investigate the effect of cannabidiol (CBD) on type 4 Toll-like receptors (TLR4), glial cells and pro-inflammatory cytokines during the neuropathic pain induced by the chemotherapy agent paclitaxel (PTX), as well as the involvement of the endocannabinoid system in this process.

Methods: Male C57BL6 mice were subjected to PTX-induced neuropathic pain. To evaluate the involvement of the TLR4, glial cells and cannabinoid CB2 receptor, specific inhibitors or antagonists were intrathecally administered. The western blotting and immunofluorescence assay was performed to evaluate the spinal expression of TLR4, microglia, astrocytes and cannabinoid CB2 receptor. The levels of spinal pro-inflammatory cytokines and endocannabinoids were determined by enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry analysis, respectively.

Key findings: CBD prevented PTX-induced neuropathic pain, and the cannabinoid CB2 receptor antagonist AM630 reversed this effect. In addition, CBD treatment inhibited the spinal expression of TLR4 and Iba1 in mice with neuropathic pain. CBD also increased spinal levels of endocannabinoids anandamide and 2-arachidonoylglycerol, and reduced levels of cytokines in mice with neuropathic pain.

Conclusions: CBD was efficient in preventing PTX-induced neuropathic pain, and this effect may involve inhibition of the TLR4 on microglia spinal with activation of the endocannabinoid system.”