[Cannabidiol: its use in refractory epilepsies].

Image result for Rev Neurol

“Some epileptic syndromes are characterised by seizures that are difficult to control and are associated to delayed neuropsychomotor development, which results in a deterioration in the patient’s quality of life as well as in that of his or her family.

AIM:

To evaluate the use of cannabidiol as adjuvant therapy in patients with refractory epilepsies.

PATIENTS AND METHODS:

An observational study was conducted by means of a survey addressed to the patient’s caregiver. Data collected included information about the patient and the caregiver, changes observed in the seizures, neuropsychological effects, side effects and the family’s overall perception following the use of cannabidiol.

RESULTS:

The evaluation examined 15 patients with refractory epilepsies, who received cannabidiol over a period ranging from one month to one year. The frequency of seizures decreased in 40% of the patients, 60% of the patients were seen to have control over 50% of their seizures and in 27% of them the seizures disappeared completely. Neurocognitive changes were also reported: behaviour improved in 73%; 60% reported an improvement in language; in 50% sleep improved; 43% reported improvements in eating habits; and 100% said their mood had improved. The overall perception of the illness was that there had been improvements in 73% of respondents. The most common side effects were drowsiness and fatigue.

CONCLUSIONS:

These results suggest a possible beneficial effect of cannabidiol on the control of seizures and on the improvement of certain neurocognitive aspects in patients with refractory epilepsies.”

https://www.ncbi.nlm.nih.gov/pubmed/28726233

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol.

Image result for frontiers in pharmacology

“Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.”  https://www.ncbi.nlm.nih.gov/pubmed/28701957

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anticonvulsant effect of cannabinoid receptor agonists in models of seizures in developing rats.

Epilepsia

“Although drugs targeting the cannabinoid system (e.g., CB1 receptor agonists) display anticonvulsant efficacy in adult animal models of seizures/epilepsy, they remain unexplored in developing animal models. However, cannabinoid system functions emerge early in development, providing a rationale for targeting this system in neonates.

We examined the therapeutic potential of drugs targeting the cannabinoid system in three seizure models in developing rats.

The mixed CB1/2 agonist and the CB1-specific agonist, but no other drugs, displayed anticonvulsant effects against clonic seizures in the DMCM model. By contrast, both CB1 and CB2 antagonism increased seizure severity. Similarly, we found that the CB1/2 agonist displayed antiseizure efficacy against acute hypoxia-induced seizures (automatisms, clonic and tonic-clonic seizures) and tonic-clonic seizures evoked by PTZ.

Early life seizures represent a significant cause of morbidity, with 30-40% of infants and children with epilepsy failing to achieve seizure remission with current pharmacotherapy. Identification of new therapies for neonatal/infantile epilepsy syndromes is thus of high priority.

These data indicate that the anticonvulsant action of the CB system is specific to CB1 receptor activation during early development and provide justification for further examination of CB1 receptor agonists as novel antiepileptic drugs targeting epilepsy in infants and children.” https://www.ncbi.nlm.nih.gov/pubmed/28691158

http://onlinelibrary.wiley.com/doi/10.1111/epi.13842/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids in Pediatrics.

“Despite its controversial nature, the use of medical marijuana and cannabis-derived medicinal products grows more popular with each passing year. As of November 2016, over 40 states have passed legislation regarding the use of either medical marijuana or cannabidiol products. Many providers have started encountering patients experimenting with cannabis products for a wide range of conditions. While the debate continues regarding these agents for both medicinal and recreational use in the general population, special consideration needs to be made for pediatric use. This review will deliver the history of marijuana use and legislation in the United States in addition to the currently available medical literature to equip pediatric health care providers with resources to provide patients and their parents the best recommendation for safe and appropriate use of cannabis-containing compounds.” https://www.ncbi.nlm.nih.gov/pubmed/28638299     http://www.jppt.org/doi/10.5863/1551-6776-22.3.176?code=ppag-site

“Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy.” https://www.ncbi.nlm.nih.gov/pubmed/24237632

“The legal status of cannabis (marijuana) and cannabidiol (CBD) under U.S. law.”  https://www.ncbi.nlm.nih.gov/pubmed/28169144

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Assessing the role of serotonergic receptors in cannabidiol’s anticonvulsant efficacy.

“Cannabidiol (CBD) is a phytocannabinoid that has demonstrated anticonvulsant efficacy in several animal models of seizure. The current experiment validated CBD’s anticonvulsant effect using the acute pentylenetetrazol (PTZ) model.

While this work further confirms the anticonvulsant efficacy of CBD and supports its application in the treatment of human seizure disorders, additional research on CBD’s mechanism of action must be conducted.”

https://www.ncbi.nlm.nih.gov/pubmed/28624721

http://www.epilepsybehavior.com/article/S1525-5050(17)30122-1/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Quality of Life in Childhood Epilepsy in pediatric patients enrolled in a prospective, open-label clinical study with cannabidiol.

Epilepsia

“Recent clinical trials indicate that cannabidiol (CBD) may reduce seizure frequency in pediatric patients with certain forms of treatment-resistant epilepsy. Many of these patients experience significant impairments in quality of life (QOL) in physical, mental, and social dimensions of health. In this study, we measured the caregiver-reported Quality of Life in Childhood Epilepsy (QOLCE) in a subset of patients enrolled in a prospective, open-label clinical study of CBD. Results from caregivers of 48 patients indicated an 8.2 ± 9.9-point improvement in overall patient QOLCE (p < 0.001) following 12 weeks of CBD. Subscores with improvement included energy/fatigue, memory, control/helplessness, other cognitive functions, social interactions, behavior, and global QOL. These differences were not correlated to changes in seizure frequency or adverse events. The results suggest that CBD may have beneficial effects on patient QOL, distinct from its seizure-reducing effects; however, further studies in placebo-controlled, double-blind trials are necessary to confirm this finding.”

https://www.ncbi.nlm.nih.gov/pubmed/28617940

http://onlinelibrary.wiley.com/doi/10.1111/epi.13815/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medicinal Uses of Marijuana and Cannabinoids

Publication Cover

“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.”

http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20

“Review Identifies 140 Controlled Clinical Trials Related to Cannabis”  http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacogenetics of Cannabinoids.

 European Journal of Drug Metabolism and Pharmacokinetics

“Although the application of medical marijuana and cannabinoid drugs is controversial, it is a part of modern-day medicine.

The list of diseases in which cannabinoids are promoted as a treatment is constantly expanding. Cases of significant improvement in patients with a very poor prognosis of glioma or epilepsy have already been described. However, the occurrence of side effects is still difficult to estimate, and the current knowledge of the therapeutic effects of cannabinoids is still insufficient.

In our opinion, the answers to many questions and concerns regarding the medical use of cannabis can be provided by pharmacogenetics. Knowledge based on proteins and molecules involved in the transport, action, and metabolism of cannabinoids in the human organism leads us to predict candidate genes which variations are responsible for the presence of the therapeutic and side effects of medical marijuana and cannabinoid-based drugs.

We can divide them into: receptor genes-CNR1, CNR2, TRPV1, and GPR55, transporters-ABCB1, ABCG2, SLC6A, biotransformation, biosynthesis, and bioactivation proteins encoded by CYP3A4, CYP2C19, CYP2C9, CYP2A6, CYP1A1, COMT, FAAH, COX2, ABHD6, ABHD12 genes, and also MAPK14. This review organizes the current knowledge in the context of cannabinoids pharmacogenetics according to individualized medicine and cannabinoid drugs therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/28534260

“There is a feeling that the next milestone, after legal acceptance of medical marijuana, will be intensive pharmacogenetic-oriented study of individual populations, which hopefully explain the previous contradictory results and identify in the future genetic markers to personalize cannabinoids treatment.” https://link.springer.com/article/10.1007%2Fs13318-017-0416-z

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

Image result for new england journal of medicine

“BACKGROUND

The Dravet syndrome is a complex childhood epilepsy disorder that is associated with drug-resistant seizures and a high mortality rate. We studied cannabidiol for the treatment of drug-resistant seizures in the Dravet syndrome.

METHODS

In this double-blind, placebo-controlled trial, we randomly assigned 120 children and young adults with the Dravet syndrome and drug-resistant seizures to receive either cannabidiol oral solution at a dose of 20 mg per kilogram of body weight per day or placebo, in addition to standard antiepileptic treatment. The primary end point was the change in convulsive-seizure frequency over a 14-week treatment period, as compared with a 4-week baseline period.

RESULTS

The median frequency of convulsive seizures per month decreased from 12.4 to 5.9 with cannabidiol, as compared with a decrease from 14.9 to 14.1 with placebo (adjusted median difference between the cannabidiol group and the placebo group in change in seizure frequency, −22.8 percentage points; 95% confidence interval [CI], −41.1 to −5.4; P=0.01). The percentage of patients who had at least a 50% reduction in convulsive-seizure frequency was 43% with cannabidiol and 27% with placebo (odds ratio, 2.00; 95% CI, 0.93 to 4.30; P=0.08). The patient’s overall condition improved by at least one category on the seven-category Caregiver Global Impression of Change scale in 62% of the cannabidiol group as compared with 34% of the placebo group (P=0.02). The frequency of total seizures of all types was significantly reduced with cannabidiol (P=0.03), but there was no significant reduction in nonconvulsive seizures. The percentage of patients who became seizure-free was 5% with cannabidiol and 0% with placebo (P=0.08). Adverse events that occurred more frequently in the cannabidiol group than in the placebo group included diarrhea, vomiting, fatigue, pyrexia, somnolence, and abnormal results on liver-function tests. There were more withdrawals from the trial in the cannabidiol group.

CONCLUSIONS

Among patients with the Dravet syndrome, cannabidiol resulted in a greater reduction in convulsive-seizure frequency than placebo and was associated with higher rates of adverse events. (Funded by GW Pharmaceuticals; ClinicalTrials.gov number, NCT02091375.)”

http://www.nejm.org/doi/10.1056/NEJMoa1611618

“Cannabinoids for Epilepsy — Real Data, at Last”  http://www.nejm.org/doi/full/10.1056/NEJMe1702205

“Cannabidiol (CBD) Significantly Reduces Convulsive Seizure Frequency in Dravet Syndrome (DS): Results of a Multi-center, Randomized, Double-blind, Placebo-controlled Trial (GWPCARE1)” http://files.shareholder.com/downloads/AMDA-1TW341/201889199x0x919787/73B57FA6-CD45-4ABB-8C89-87EFEA36B4ED/1332B_AES_Poster_Dravet_Part_B_.pdf

“EPILEPSY AND MARIJUANA: CANNABIS DRUG REDUCES DRAVET SYNDROME SEIZURES IN LARGE-SCALE CLINICAL TRIAL” http://www.newsweek.com/cannabis-marijuana-dravet-syndrome-epilepsy-clinical-trial-614982

“Study proves medicinal cannabis can help children with severe epilepsy, researchers say” http://www.abc.net.au/news/2017-05-25/scientific-study-medicinal-cannabis-helps-children-with-epilepsy/8556180
 
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol in Medical Marijuana: Research Vistas and Potential Opportunities.

Cover image

“The high and increasing prevalence of medical marijuana consumption in the general population invites the need for quality evidence regarding its safety and efficacy. Herein, we synthesize extant literature pertaining to the phytocannabinoid cannabidiol (CBD) and its brain effects.

The principle phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) and CBD are the major pharmacologically active cannabinoids. The effect of CBD on brain systems as well as on phenomenological measures (e.g. cognitive function) are distinct and in many cases opposite to that of Δ9-THC.

Cannabidiol is without euphoriant properties, and exerts antipsychotic, anxiolytic, anti-seizure, as well as anti-inflammatory properties.

It is essential to parcellate phytocannabinoids into their constituent moieties as the most abundant cannabinoid have differential effects on physiologic systems in psychopathology measures. Disparate findings and reports related to effects of cannabis consumption reflect differential relative concentration of Δ9-THC and CBD.

Existing literature, notwithstanding its deficiencies, provides empirical support for the hypothesis that CBD may exert beneficial effects on brain effector systems/substrates subserving domain-based phenomenology. Interventional studies with purified CBD are warranted with a call to target-engagement proof-of-principle studies using the research domain criteria (RDoC) framework.” https://www.ncbi.nlm.nih.gov/pubmed/28501518

http://www.sciencedirect.com/science/article/pii/S1043661817303559

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous